
WASHINGTON UNIVERSITY IN ST. LOUIS

McKelvey School of Engineering
Department of Computer Science and Engineering

Dissertation Examination Committee:
Roman Garnett, Chair

Ayan Chakrabarti
Sanmay Das

David Duvenaud
Brendan Juba

Efficient Nonmyopic Sequential Experimental Design
by

Shali Jiang

A dissertation presented to
The Graduate School

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

August 2020
Saint Louis, Missouri



c© 2020, Shali Jiang



Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Declaration of Previous Publications . . . . . . . . . . . . . . . . . . . . . . 5

2 Sequential Experimental Design Overview . . . . . . . . . . . . . . . . . . . 9
2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Bayesian Decision Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Bellman Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Related Research Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Budgeted Active Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Bayesian Optimal Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Hardness of Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Efficient Nonmyopic Approximation . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Nonmyopic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 k Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.2 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.3 Pruning the Search Space . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7.1 Finding neurips Papers From CiteSeerx . . . . . . . . . . . . . . . . 37
3.7.2 Finding Bulk Metallic Glasses . . . . . . . . . . . . . . . . . . . . . . 39
3.7.3 Drug Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

ii



3.7.4 Compare with Naive Exploration/Exploitation Approaches . . . . . . 42
3.7.5 Compare with UCB-Style Policy . . . . . . . . . . . . . . . . . . . . . 44
3.7.6 Pruning Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Batch Budgeted Active Search . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1 Bayesian Optimal Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Adaptivity Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Efficient Nonmyopic Approximations . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Sequential Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.2 Greedy Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.3 Lazy Evaluation for Pruning . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.1 Finding neurips Papers From CiteSeerx . . . . . . . . . . . . . . . . 64
4.5.2 Finding Bulk Metallic Glasses . . . . . . . . . . . . . . . . . . . . . . 65
4.5.3 Drug discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.5 Pruning Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Cost Effective Active Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Bayesian Optimal Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Hardness of Cost Effective Active Search . . . . . . . . . . . . . . . . . . . . 81
5.4 Efficient Nonmyopic Approximation . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.1 Negative Poisson Binomial Distribution . . . . . . . . . . . . . . . . . 83
5.4.2 Approximation of the NPB expectation . . . . . . . . . . . . . . . . . 84
5.4.3 Approximation of Expected Cost . . . . . . . . . . . . . . . . . . . . 88
5.4.4 Lazy Evaluation for Pruning . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.5.1 Finding Bulk Metallic Glasses . . . . . . . . . . . . . . . . . . . . . . 91
5.5.2 Drug Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5.3 Pruning Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Bayesian Optimization and Beyond . . . . . . . . . . . . . . . . . . . . . . . 95
6.1 Background on Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . 96
6.2 binoculars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.1 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2.2 Non-Adaptive Utility as a Lower Bound of Adaptive Utility . . . . . . 99
6.2.3 Efficient Nonmyopic Approximation Framework . . . . . . . . . . . . 101

iii



6.3 binoculars for Bayesian Optimization . . . . . . . . . . . . . . . . . . . . 102
6.4 binoculars for Bayesian Quadrature . . . . . . . . . . . . . . . . . . . . . 105
6.5 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.7.1 BO Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.7.2 BQ Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.8 Multi-Step Lookahead via One-Shot Optimization . . . . . . . . . . . . . . . 117
6.8.1 Previous Work on Two-Step Lookahead bo . . . . . . . . . . . . . . . 117
6.8.2 One-Shot Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.8.3 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.1 Theoretical Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2 Learning to Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.3 Multi-Fidelity Active Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Appendix A Hardness of Budgeted Active Search . . . . . . . . . . . . . . 130

Appendix B Adaptivity Gap of Batch Budgeted Active Search . . . . . . 137

Appendix C Hardness of Cost Effective Active Search . . . . . . . . . . . . 147

Appendix D Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . 152
D.1 Cost Effective Active Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
D.2 Bayesian Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

iv



List of Tables

3.1 CiteSeerx (left) and bmg (right) data: Average number of targets found by the
one- and two-step myopic policies and ens with different five budgets, varying
from 100 to 900, at specific time steps. The performance of the best method
at each time waypoint is in bold. . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Number of active compounds found by various active search policies at termi-
nation for each fingerprint, averaged over 120 active classes and 20 experiments.
Also shown is the difference of performance between ens and two-step looka-
head and the results of the corresponding paired t-test. . . . . . . . . . . . . 39

3.3 Average number of pruned points in each iteration for the two chemical datasets. 46

4.1 Results for CiteSeerx data: Average number of targets found by various batch
policies: greedy-batch, sequential simulation “ss-p-o” and batch-ens, with
batch sizes 5, 10, 15, 20, 25. The average is taken over 100 experiments.
Highlighted are the best in each column and those not significantly worse than
the best using a one-sided paired t test with significance level α = 0.05. . . . 65

4.2 Diversity scores of the chosen batches by all our proposed policies, measured
by the average rank of distances from each other in a batch, produced from
the results on CiteSeerx data. Higher value indicates more diversity. . . . . . 66

4.3 Results for bmg data: average number of targets found by various batch
policies: baseline greedy-batch, sequential simulation “ss-p-o” and batch-ens,
with batch sizes 5, 10, 15, 20, 25. The average is taken over 30 experiments.
Highlighted are the best in each column and those that are not significantly
worse than the best using a one-sided paired t test with significance level
α = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Results for drug discovery data: Average number of positive compounds found
by the baseline uncertain-greedy batch, greedy-batch, sequential simulation
and batch-ens policies. Each column corresponds to a batch size, and each
row a policy. Each entry is an average over 200 experiments (10 datasets by
20 experiments). The budget T is 500. Highlighted are the best (bold) for
each batch size and those that are not significantly worse (blue italic) than
the best under one-sided paired t-tests with significance level α = 0.05. . . . 68

4.5 Diversity scores of the chosen batches by all sequential simulation policies,
measured by the average rank of distances from each other in a batch. The
results are for b = 20 on CiteSeerx data. Higher values indicate more diversity.
For reference, the score for greedy and batch-ens are 2443 and 3126, respectively. 72

v



4.6 Results for pruning effectiveness. The numbers are averaged over all iterations
of batch-ens for all batch sizes tested. For drug discovery data, the result is
averaged over batch-ens-16 and batch-ens-32. . . . . . . . . . . . . . . . . . 74

5.1 Time cost and quality of various approximations of the expectation of npb
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Results on materials discovery data. Averaged over 30 experiments. . . . . . 91
5.3 Averaged results over 30 repetitions and nine drug discovery datasets. . . . . 92
5.4 Average pruning rate across all iterations in all experiments for the reported

ences policies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 Average gap over 100 repeats on “hard” synthetic functions. . . . . . . . . . 112
6.2 Average gap over 50 repeats on real functions. . . . . . . . . . . . . . . . . . 113
6.3 Median fractional error values over 100 repeats on all bq functions. . . . . . 116

D.1 Results for all tested policies for the materials discovery dataset. . . . . . . 153
D.2 Results for all tested policies for the nine drug discovery datasets. . . . . . . 154
D.3 Average gap of 30 repeats on all 31 synthetic functions. . . . . . . . . . . . . 156
D.4 Average gap of 50 repeats on real functions for all q.ei variants. Note function

names are shortcuts for better spacing. . . . . . . . . . . . . . . . . . . . . . 156

vi



List of Figures

3.1 Kernel density estimates of the distribution of points chosen by ens (top) and
2-step lookahead (bottom) during two different time intervals. The figures on
the left show the kernel density estimates for the first 100 locations; the figures
on the right, the last 100 chosen locations. . . . . . . . . . . . . . . . . . . . 29

3.2 The learning curve of our policy and other baselines on the neurips dataset. 37
3.3 The average difference in cumulative targets found between ens and the two-

step policy, averaged over 120 activity classes and 20 experiments on (a) ecfp4
and (b) gpidaph3 fingerprint. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Comparion of active search policies with a naive exploration-exploitation
approach called uncertain-then-greedy (utg), which performs uncertainty
sample for the first 100r% of the budget and then greedy sampling in the
remaining iterations, where r is a hyperparameter controlling the transition
point. (a) CiteSeerx Dataset. (b) bmgs dataset. (c) Drug discovery datasets. 43

3.5 Number of targets found by the ucb-style policy (3.11), as a function of the
hyperparameter p∗ as derived in (3.12), averaged over 20 experiments. Note
for CiteSeerx and bmg datasets, the grid size of p∗ is 0.01, but for ecfp4, we
can only afford grid size of 0.1. To put these results into perspective, we also
show the two-step performances by the red horizontal line, indicating two-step
performs better than the ucb-style policy on all three domains. All these
results are with budget 500. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Illustration of pruning. The x-axis is the index of candidate points in descending
order of the upper bounds, and the y-axis is the actual marginal gain of batch-
ens score as in Eq. (6) in the main text. These plots are generated from
running batch-ens on the CiteSeerx data with budget T = 500 and batch size
b = 5. There are 39 788 points, we only plot the first and last 1 000 points to
have a better presentation. (a) At the time of choosing the first point (k = 1)
of the 99th batch (i.e., i = 98) when T − b− |Di| = 5; here 99.61% of points
are pruned. (b) At the time of choosing the first point (k = 1) of the 16th (i.e.,
i = 15) batch when T − b− |Di| = 420; 98.23% of the points are pruned. . . 60

4.2 Number of targets found versus number of samples used for batch-ens. This
is averaged over the results for batch size 50 on 10 drug discovery datasets
and 20 experiments each. The text labels show the percentage of improvement
and p-value of one-sided t tests comparing against previous numbers, e.g., 8
samples improves over 4 samples by 1.9%, and the p-value is 0.04. . . . . . . 69

vii



4.3 (a) Average performance ratio between sequential policies and batch policies,
as a function of batch size, produced using averaged results in Table 4.4. (b)
Same plots produced using averaged results (excluding uncertain-greedy) for
the CiteSeer dataset (Table 4.1). . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Progressive probabilities of the chosen points of greedy and batch-ens-32,
averaged over results for batch size 50 on all 10 drug discovery datasets and
20 experiments each. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1 Illustration of a probability vector [p1, p2, . . . , pn] and the corresponding prob-
ability mass functions of npb distribution for different r. Left: the top 1500
posterior marginal probabilities after conditioning on 100 positive and 100
negative points (randomly selected); probabilities are computed using a k-nn
model (with k = 50) on the CiteSeerx dataset; middle: r = 50; right: r = 200. 85

5.2 Approximation errors of various approximation methods for computing the
expectation of npb distribution. y-axis is approximate E[m] minus exact E[m].
The error for recip drops below -10 after about r = 250, hence not shown to
zoom in the interesting part of the figure. . . . . . . . . . . . . . . . . . . . 87

5.3 Average cost versus the number of positives found, averaged over 9 drug
discovery datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1 An illustration of our proposed nonmyopic method applied to bo. (a) A
function in [−1, 1] drawn from a gp where the two end points are known to be
zero. (b) and (c) show two iterations of bo with the ei acquisition function.
(d) ei, 2-ei and 2-step-ei curves with their respective maximizers. (e) and (f)
show two iterations of bo where the first point is chosen from the two points
maximizing 2-ei, and the second one is chosen by maximizing ei (conditioned
on the observation in iteration one). . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Average gap over nine synthetic functions demonstrating the nonmyopic
behavior of 12.ei.s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 mean gap with error bars at termination versus time per iteration (in log
scale) averaged over the seven real functions. . . . . . . . . . . . . . . . . . . 114

6.4 Median fractional error over 100 repeats against iterations or time. (a) synthetic
functions, (b) real functions, (c) real functions. . . . . . . . . . . . . . . . . 116

6.5 Preliminary results of multi-step lookahead Bayesian optimization via one-shot
optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.1 An instance of active search where any efficient algorithm can be arbitrarily
worse than an optimal policy. . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B.1 An illustrative example of the constructed instance with h = 3 and 2h = 8
clumps, where the third clump from the left is positive, corresponding to the
correct path, 010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

viii



B.2 Illustration of the relevant subtree. The red curve shows the correct path
identified so far. If the last node on the correct path is negative, then the
node A must also be on the correct path, and the subtree rooted at A is the
relevant subtree; otherwise B is on the correct path, and the subtree rooted at
B is the relevant subtree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

C.1 An instance of active search where any efficient algorithm can be arbitrarily
worse than an optimal policy. . . . . . . . . . . . . . . . . . . . . . . . . . . 148

D.1 Average cost versus the number of positives found for 9 drug discovery datasets.
The total number of positives are 553, 378, 506, 1023, 218, 916, 1024, 431, 255,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

ix



Acknowledgments

My deepest gratitude goes to my advisor, Roman Garnett. He is among the brightest minds I

know. It has been an absolute pleasure working with him. He always gives me the freedom on

what to work on but at the same time provides helpful guidance so that I would not get lost.

He always knows when to step in so that I would not struggle too much and when to step

out so that I get the most out of the experience. I admire him as a wise and knowledgeable

professor, and at the same time I can comfortably talk to him as a friend. I enjoyed a lot

hanging out with him when attending conferences in Sydney, Montreal, Vancouver etc., and

through that I got to know a lot of fellow researchers from around the globe, which helped

shape some of the ideas in this thesis.

Thanks to all my collaborators for their contributions. Specially, I would like to thank

Benjamin Moseley for all his help on the active search projects. Whenever I struggle with a

hard proof I go to Ben, and he would always amaze me with his incredible mathematical

intuition and versatile proving techniques. This thesis (especially the theoretical part) would

not be possible without him. I would also like to thank my labmate Gustavo Malkomes, who

is like a big brother, always there to help, professionally or otherwise. I especially thank him

for his help with my first publication on active search. This was a very important milestone

for my Ph.D. I would also like to thank my labmate Henry Chai. He is a wonderful teacher

and presenter, and always gives great suggestions on my presentations. He is also the first

person I go to for English questions. Also, it was a great pleasure working with him on the

binoculars project.

x



Thanks to my committee members, David Duvenaud, Sanmay Das, Brendan Juba, and Ayan

Chakrabarti, for asking insightful questions and providing valuable suggestions. Thanks

to Prof. Garnett, Das, Juba, and Neumann for teaching the wonderful classes on artificial

intelligence, machine learning and multi-agent systems, and also for the inspiring discussions

in machine learning seminars.

I would also like to thank my office mates for keeping our office a pleasant working envi-

ronment and many fun hangouts. Special thanks to Zhuoshu for helping me with intern

job search and “dragging” me to the gym, among other things. Special thanks to my class-

mate/friend/collaborator Muhan Zhang for giving me highly motivational peer pressure by

being so hard-working and productive. Thanks to my “hotpot friends” and many others not

listed here for the fun times we had together.

Last but not least, I thank my parents for their unconditional love. No matter how far I

travel, it gives me peace and strength knowing that there is always a place called home

that I can go back to. Thanks to my dear sisters for posting moments of my little nieces.

Nothing makes me more relaxed than watching them playing and listening to their talking

and laughing (or sometimes hilarious crying). Finally, I would like to thank my beloved

fiancée Haipeng Dai. It is her constant understanding, support, encouragement and love that

helped me through the most difficult challenges.

Shali Jiang

Washington University in Saint Louis
August 2020

xi



Dedicated to my fiancée and my parents.

xii



ABSTRACT OF THE DISSERTATION

Efficient Nonmyopic Sequential Experimental Design

by

Shali Jiang

Doctor of Philosophy in Computer Science

Washington University in St. Louis, August 2020

Research Advisor: Professor Roman Garnett

Sequential experimental design (sed) problems are abundant in science and engineering.

Examples include drug discovery, materials discovery, or machine learning hyperparameter

tuning. Such problems can be formulated as sequentially choosing locations to evaluate

an expensive black-box function to maximize some notion of utility. The optimal policy

under Bayesian decision theory maximizes the expected utility, marginalizing over all future

uncertainties in the decision horizon. However, this is usually computationally intractable and

needs to be approximated. Existing approximations are often myopic, meaning the lookahead

horizon is limited to only very few steps into the future. Though computationally efficient,

they often suffer from poor balance between exploration and exploitation. In this thesis, we

attempt to bridge this gap by designing policies that are both efficient and nonmyopic.

The main idea is to use the non-adaptive expected utility to approximate the adaptive expected

utility. This allows us to efficiently optimize a tighter lower bound of the true expected utility

than myopic approximations. This idea is instantiated on a problem known as active search,

xiii



where we sequentially evaluate items from a large candidate pool to search for targets with a

desired property, assumed to be rare. Various settings of active search are considered.

We begin with the budgeted setting, where the goal is to identify maximum number of targets

in a given number of iterations. We establish the hardness of the problem, and propose an

efficient nonmyopic search (ens) policy by approximating the future adaptive utility after

the current step by its non-adaptive counterpart. We then extend to the batch setting, where

multiple items are evaluated simultaneously. We prove that, given the same total number of

evaluations, the expected utility of the optimal batch policy is worse than that of the optimal

sequential policy by at least a linear factor of batch size. ens can be naturally generalized to

the batch setting, but a batch policy requires combinatorial search, for which we propose

several effective heuristic solutions such as sequential simulation and greedy selection.

We also study cost effective active search, where the goal is to find a given number of targets

with minimum number of iterations. We also establish the hardness of this setting. ens here

boils down to approximating the expectation of a negative Poisson binomial distribution. In

all active search settings, superior performance of our proposed policies is demonstrated on

drug and materials discovery, and a desirable nonmyopic exploration/exploitation behavior is

often observed.

Finally, we adapt this idea to general continuous sed settings. We first compute an optimal

batch (i.e., the non-adaptive solution), then select one point from the batch. We show this

procedure maximizes a looser lower bound than ens, but still much tighter than myopic

one-step approximations. We realize this idea for both Bayesian optimization and Bayesian

quadrature and demonstrate superior performance on the two drastically different tasks.

Finally, we briefly discuss the idea of one-shot optimization for efficient multi-step lookahead

Bayesian optimization and show promising preliminary results.

xiv



Chapter 1

Introduction

Sequential experimental design (sed) problems are abundant in science and engineering.

In scientific discovery, researchers often adaptively design new experiments based on the

outcomes of past ones. An example is drug discovery, where one needs to sequentially examine

new chemical compounds to find the targets with desired properties. The question is which

compounds to examine next so that more targets are identified within a limited budget.

In algorithmic engineering, there are often many potential configurations when tuning an

algorithm. For example, deep learning has been extremely successful in many domains in

recent years, but applying such technologies requires careful design of the network structure

and tuning of the hyperparameters such as learning rate, number of hidden nodes, etc.; this

can be formulated as an sed problem where we adaptively choose new configurations to

evaluate in order to find a satisfactory one. The question is which configuration to evaluate

next given limited time and computational resources. In numerical computation, we often

encounter analytically intractable integrals with an expensive-to-evaluate integrand; for

example when computing the partition function in Bayesian statistics, the integrand is a

likelihood function defined by a potentially large data sample. Such a fundamental problem

can also be formulated as an sed problem, where we adaptively choose locations to evaluate

1



the integrand so as to minimize the number of samples required to get an accurate estimate

of the integral. The question is, again, which location to evaluate next? In all the examples

mentioned above, one common characteristic is the experiments are typically expensive, in

terms of monetary, computational, or time cost. Thus, it is of great importance to intelligently

choose what locations to evaluate.

In this thesis, we define sed as a paradigm in which we sequentially evaluate an expensive

black-box function in order to achieve a certain goal. The key question is: where to evaluate

next in order to achieve the goal given limited resources?

We approach this problem with Bayesian decision theory, a framework for decision making

under uncertainty. We model the function in a Bayesian fashion, and define a utility

function to express preference over different designs and outcomes. The Bayesian optimal

policy maximizes the expected utility in each iteration, which marginalizes over all future

uncertainties in the decision horizon. The expected utility can be derived in the form of

Bellman equation, which is computationally intractable for the problems of interest. Existing

work mostly adopts myopic approaches where the decision horizon is limited to only a few

steps (e.g., one or two), ignoring the long-term impact beyond the short horizon. Such myopic

policies are widely used in practice due to their computational efficiency, but their poor

balance of exploration and exploitation often results in suboptimal performance. This thesis

attempts to bridge this gap by designing policies that are both efficient and nonmyopic.

The main idea behind most of our policies can be summarized in a single sentence: use the

non-adaptive expected utility to approximate the adaptive expected utility. This simple idea

allows us compute a tighter lower bound of the true adaptive expected utility, retaining the

nonmyopia of the optimal policy to a much higher degree than myopic approximations, yet

remaining computationally efficient.

2



We implement variants of this idea for several sed problems. The main problem we study

is called active search, where we sequentially evaluate items from a large candidate pool to

search for targets with a desired property, assumed to be extremely rare. Typical examples

include drug and materials discovery. This can be seen as an sed problem with the underlying

function being binary-valued with a finite domain, and the goal is to identify positive points.

Two variants of active search are studied: budgeted setting and a novel cost effective setting.

In budgeted active search (Chapter 3), the goal is to find the maximum number of positive

points in a given number of iterations. The idea of our efficient nonmyopic search (ens)

policy is to approximate the expected future adaptive utility after the current step by its

non-adaptive counterpart. That is, pretend all future choices after the outcome of this step

would be committed at once. We extend this idea to batch policies, where in each iteration

multiple points are selected and evaluated in parallel (Chapter 4). Several heuristics including

sequential simulation and greedy selection are proposed to approximately optimize the batch

expected utility; exact optimization is not feasible due to its combinatorial nature.

We also apply this idea to the “dual” of the budgeted setting, which we call cost effective active

search (Chapter 5), where the goal is to identify a given number of positives with minimum

number of iterations. This is the first study on this problem with a principled approach

in the active search literature. A non-adaptive approximation boils down to estimating

the expectation of a negative Poisson binomial distribution, i.e., the expected number of

non-uniform coins that need to be flipped to get a given number of heads.

This idea is also adapted to the continuous setting (Chapter 6), where we directly compute

an optimal batch and then select one point from this batch. We show that this essentially

optimizes a lower bound of the expected utility, looser than ens, but much tighter than

3



myopic one-step approximations. We empirically show that such a simple approximation

works well on two drastically different tasks: Bayesian optimization and Bayesian quadrature.

We also briefly discuss another idea that makes multi-step lookahead Bayesian optimization

practical (section 6.8): jointly optimize all the variables in the whole decision tree in one-shot,

instead of repeatedly solving nested maximizations. We present very promising preliminary

results in terms of both optimization performance and computational efficiency.

In each iteration of active search, a standard procedure is to evaluate the approximate

expected utility on all candidate points in the pool, and then choose the one with maximum

value. This could be very time-consuming since the candidate pool is typically very large

(e.g., 100k+). To further improve efficiency, we develop aggressive pruning strategies based

on probability bounds for all our active search policies. Typically only a very small portion

of points (e.g. 1%) need to be accessed in order to find the best. This allows us to perform

experiments on massive datasets.

In almost all our experiments of all problem settings, our proposed nonmyopic policies achieve

significant improvement over existing myopic ones, on real datasets such as drug/materials

discovery, hyperparameter tuning, etc. More interestingly, we often observe favorable ex-

ploration/exploitation behavior: nonmyopic policies initially underperform myopic policies,

exploring the space, but catch up at some point and outperform myopic policies towards the

end of the budget, exploiting what has been learned and collect the utility.

Theoretically, we for the first time establish the hardness of active search, in both the budgeted

and cost effective settings. We prove in the worst case that there are no polynomial time

policies that can achieve expected utility within (or expected cost beyond) a constant ratio

of that of the optimal policy. We also prove a lower bound on the adaptivity gap that shows

4



how much we could lose if we use larger batch sizes (hence be less adaptive), given the

same number of total evaluations: the optimal batch policy is worse than the optimal purely

sequential policy by at least a linear factor of batch size in terms of expected utility. This

theoretical result is shown to match the empirical pattern, which could provide guidance on

choosing batch sizes in practice.

Finally, we discuss important future directions regarding theoretical guarantees of our

nonmyopic approximations, multi-fidelity active search, and possible reinforcement learning

or meta learning approaches to problem settings where many similar active search problems

are solved repeatedly.

1.1 Declaration of Previous Publications

All the work in this thesis resulted from collaboration with other researchers. Most of them

has been published in peer-reviewed conferences. In the following we outline the original work

presented in this thesis, with reference to previous publications or unpublished manuscripts,

and describe my contribution to each piece of work.

Chapter 2: Sequential Experimental Design Overview

This chapter mainly introduces some well established concepts that this thesis is built on.

The presentation is mostly the author’s own. The presentation and notations on Bayesian

decision theory are partially inspired by a draft of this book:

Garnett, R., Bayesian Optimization, in preparation, 2020.

Chapter 3: Budgeted Active Search

5



The work in this chapter has appeared in the following publication:

Jiang, S., Malkomes, G., Converse, G., Shofner, A., Moseley, B., Garnett, R. Efficient

Nonmyopic Active Search. In Proceedings of the International Conference on Machine

Learning (icml), 2017.

Garnett proposed the main idea, implemented a prototype and conducted some preliminary

experiments on CiteSeerx data. Jiang developed and implemented the pruning technique

that drastically improved the efficiency, and carried out all the experiments and analysis of

the results. Malkomes prepared Figure 3.1 to demonstrate the nonmyopic behavior of the

proposed policy and conceived the main parts of the active search instances for the hardness

proof, especially the key idea of using xor operator to encode dependence. Malkomes,

Moseley and Jiang jointly completed the proof.

Chapter 4: Batch Budgeted Active Search

The work in this chapter has appeared in the following publication:

Jiang, S., Malkomes, G., Abbott, M., Moseley, B., Garnett, R. Efficient Nonmyopic Batch

Active Search. Advances in Neural Information Processing Systems (neurips), 2018.

Garnett suggested sequential simulation and Moseley suggested greedy optimization of the

batch utility function. Jiang implemented all the algorithms, built the experimental platform,

and carried out all the experiments and analysis of the results. Abbott contributed to the

implementation of sequential simulation. Malkomes gave valuable suggestions on testing

larger batch sizes to see more consistent patterns. Garnett suggested the presentation of

progressive probability trace in Figure 4.4 to demonstrate the nonmyopic behavior. Moseley

6



conceived the high level idea for proving the lower bound of adaptivity gap; Moseley and

Jiang completed the proof jointly.

Chapter 5: Cost Effective Active Search

The work in this chapter has appeared in the following publication:

Jiang, S., Moseley, B., Garnett, R. Cost Effective Active Search. Advances in Neural

Information Processing Systems (neurips), 2019.

Garnett conceived the problem setting. Jiang proposed the solution based on approximating

expectation of negative Poisson binomial distribution. Jiang also implemented the algorithm

and carried out all the experiments and analysis of results. Jiang and Moseley completed the

hardness proof jointly.

Chapter 6: Bayesian Optimization and Beyond

This chapter describes a general framework for sed in the continuous setting, called binocu-

lars. The work is based on the content in the following manuscript:

Jiang, S., Chai, H., Gonzalez, J., Garnett, R. binoculars for Efficient, Nonmyopic Sequential

Experimental Design. In submission to icml 2020.

The main idea came up during a meeting of Jiang and Garnett. Jiang derived the mathematical

justification that the proposed policy maximizes a lower bound the true expected utility and

provided initial convincing results under Bayesian optimization setting. Garnett suggested

to try the idea on Bayesian quadrature, which was implemented by Chai. Jiang developed

Figure 6.1 to demonstrate the intuition of the proposed algorithm. Jiang carried out the

7



experiments for Bayesian optimization and Chai carried out the experiments for Bayesian

quadrature. Gonzalez helped on implementing the glasses baseline.

The work on one-shot optimization, briefly discussed in 6.8, resulted from an ongoing

collaboration with Balandat, M., Garnett, R., Jiang, D., and Karrer, B. The idea of one-shot

optimization was original proposed in [4] for knowledge gradient. The one-shot multi-step

lookahead algorithm is implemented mainly by Balandat. S. Jiang added support for Gauss-

Hermite sampling. The preliminary result shown in Figure 6.5 is produced by S. Jiang using

the code base built on top of the work for binoculars.

8



Chapter 2

Sequential Experimental Design

Overview

In this chapter, we first formally define the sequential experimental design problem, then

introduce Bayesian decision theory and Bellman equation for solving this problem, followed

by a discussion of most related research literature.

2.1 Problem Formulation

Suppose there is an unknown function f : X 7→ Y, typically black-box and expensive to

evaluate. We may know the function values on a subset of locations (possibly empty) in

the beginning. Denote this initial set of observations as D = D0. We sequentially choose

locations x ∈ X to evaluate (or query) the function and acquire observations y = f(x)1, and

accumulate our observation set D = D ∪ {(x, y)}, until some termination condition is met.

The design problem in this process is to intelligently choose locations to evaluate f so as to
1It could be that f is a latent function, and y is generated with some observation model on top of f(x),

such as Bernoulli and Gaussian. We adopt a simple presentation here to avoid describing unnecessarily
complicated mathematical background on statistical modeling.

9



Algorithm 1 Sequential Experimental Design
Given input domain X
Given black-box function f
Given initial observations D = D0 ≡ {(xi, yi)}i
repeat
x← Policy(D) {{x} ⊆ X could be a batch of points}
y v f(x) {evaluate x, the outcome(s) could be stochastic}
D ← D ∪ {(x, y)}

until termination condition is reached
return D

maximize the “value” of the final observed set D. The concept of “value” will be formalized

later. Such sequential experimental design processes are summarized in Algorithm 1.

What differentiates one problem from another is the underlying function f , termination

condition and optimization goal. In the following, we instantiate each of the components

in this formulation for three example problems we will study later: active search, Bayesian

optimization, and Bayesian quadrature.

• Active search: sequentially evaluate items from a large candidate pool to search for

targets with a desired property.

– The design space X = {x1, . . . , xn} is finite. For example, X could represent a set

of chemical compounds we need to search through in the case of drug discovery.

– The response space Y = {0, 1} is binary, representing positive/negative. For

example, in drug discovery, the unknown function f is defined such that f(x) =

1 indicates the compound x exhibits sufficient binding activity with a certain

biological target. Typically the positive class is extremely rare, rendering this

problem challenging.

10



– The termination condition could be defined by a given querying budget or a

predefined number of positives:

∗ if the process terminates after a given querying budget T , we call it budgeted

active search, that is, we can only perform T qeuries. The goal in this

setting would be to maximize the number of positives identified ;

∗ if the process terminates when a predefined number of positives are identified,

we call it cost effective active search. In this case, the goal is to minimize

the number of iterations required.

• Bayesian optimization:2 solve x∗ = arg maxx∈X f(x) with a Bayesian approach.

– The design space X in the simplest case could be just X ⊆ Rd, with each dimension

bounded. More typically, it is a mix of continuous, discrete, or even categorical

dimensions. For example, in the case of hyperparameter tuning of deep neural

networks, each x ∈ X is a configuration of the architecture and hyperparameters,

e.g., number of hidden nodes in each layer, learning rate, etc.

– The response space Y is often Y ⊆ R. For example, y = f(x) could represent the

validation accuracy of a neural network trained with configuration x.

– The termination condition for Bayesian optimization could also be defined similarly

as in active search, but we will focus on budgeted setting. The goal is often to

find the best possible input x so that f(x) is maximized. We will formalize these

concepts later.

• Bayesian quadrature: solve Z =
∫
x∈X f(x)p(x)dx numerically with a Bayesian approach.

2There are many variants of Bayesian optimization; what is introduced here is just one of them, which we
focus on in this thesis.

11



– The design and response space can be any continuous space as long as Z is a

valid integration. An interesting case is f(x) represents a likelihood model and X

defines the parameter space, and p(x) is a prior belief on the parameters. In this

case Z is the model evidence. f is typically expensive if the sample size is large.

– The termination condition could also be budgeted or cost effective. For example,

in budgeted setting our goal would be to minimize the variance of Z in a given

number of function evaluations. Note Z is a random variable if we model f by a

stochastic process.

One of the key challenges in solving sed problems lies in the tradeoff of exploration and

exploitation; that is, to explore locations where f is highly uncertain, which could considerably

improve our knowledge of f , or exploit the current knowledge about f and select locations

where we expect to get high immediate reward. Next, we introduce Bayesian decision theory

for solving this problem.

2.2 Bayesian Decision Theory

Bayesian decision theory is a framework for decision making under uncertainty. A compre-

hensive treatment can be found in [5]. In the context of sequential experimental design,

Bayesian decision framework operates with two necessary components: Bayesian modeling of

the function f and defining a utility function to express preference over different designs D.

• The model of f allows us to reason about the posterior belief about f conditioned on

any set of observations D. Under this posterior belief, we have a probability distribution

p(y | x,D) for any x ∈ X and y = f(x).
12



• The utility function u(D) is defined depending on the task at hand, indicating preference

of one set over another. For example, in budgeted active search u(D) would be the

number of positive points in D, and in Bayesian optimization, u(D) could be the

maximum function value in D.

Suppose we are at a state where we have observed a set D, and our budget allows us to

perform k more iterations of querying. If we let Dk denote the entire set of observations at

the end, then Dk is composed of three parts as shown below:

Dk ≡ D,
observed

x,

decision

y, x2, y2, . . . , xk, yk.

unobserved

(2.1)

Clearly Dk is a random quantity due to the uncertain future; hence u(Dk) is also random.

The Bayesian optimal policy chooses x maximizing the expected utility

x∗ = arg max
x

E[u(Dk) | x,D]. (2.2)

In most scenarios of interest, this expectation is computationally intractable. In the following,

we derive the Bellman equation for computing the expected utility in a dynamic programming

approach.

13



2.3 Bellman Equation

Define vk(x | D) as the expected marginal value of the remaining k steps starting from x,

following the optimal policy after choosing x in the first step. That is

vk(x | D) = E[u(Dk)− u(D) | x,D]. (2.3)

Recall Dk ≡ D∪{(x, y)}∪ {(x2, y2)}, . . . , {(xk, yk)}. So the expectation is taken with respect

to all unknown quantities: y, x2, y2, . . . , xk, yk, assuming the sequence is constructed such

that each xi, i = 2, . . . , k, would be selected with the optimal policy upon the revelation of

the previous yi−1. Since u(D) is a known constant, (2.2) is equivalent to

x∗ = arg max
x

vk(x | D). (2.4)

Define D1 ≡ D ∪ {(x, y)} and Di ≡ Di−1 ∪ {(xi, yi)}, i = 2, . . . , k. We can derive a recursive

form of (2.3) by backward induction:

• When k = 1,

v1(x | D) = Ey[u(D1)− u(D) | x,D] =

∫

y

(u(D1)− u(D))p(y | x,D)dy. (2.5)

The integration changes to summation in case y is discrete. For example, when

u(D) =
∑

(x,y)∈D y as in active search, it is easy to see v1(x | D) = Pr(y = 1 | x,D).

14



• When k = 2, assuming the last step is chosen optimally,

v2(x | D) = Ey,x2,y2 [u(D2)− u(D) | x,D]

= Ey,x2,y2 [u(D2)− u(D1) + u(D1)− u(D) | x,D]

= Ey,x2,y2 [u(D2)− u(D1) | x,D] + Ey,x2,y2 [u(D1)− u(D) | x,D]. (2.6)

The second expectation is simply

Ey,x2,y2 [u(D1)− u(D) | x,D] = Ey[u(D1)− u(D) | x,D] ≡ v1(x | D),

since u(D1)− u(D) is unrelated to x2, y2. The first expectation is more complicated:

Ey,x2,y2 [u(D2)− u(D1) | x,D]

=

∫

y

[∫

x2

(∫

y2

(u(D2)− u(D1))p(y2 | x2,D1)dy2

)
p(x2 | D1)dx2

]
p(y | x,D)dy

=

∫

y

[∫

x2

v1(x2 | D1)p(x2 | D1)dx2

]
p(y | x,D)dy (2.7)

We assume the optimal policy is deterministic and always chooses the optimal design

x∗ = arg maxx vi(x | D) for any horizon i and existing observations D. Without loss

of generality, we assume such optimal designs are unique (break ties arbitrarily if

not). Under the assumption that the last step is optimal, p(x2 | D1) is a Dirac delta

distribution

p(x2 | D1) = δ

(
x2 − arg max

x′
v1(x′ | D1)

)
.

15



Therefore,

∫

x2

v1(x2 | D1)p(x2 | D1)dx2 = max
x′

v1(x′ | D1). (2.8)

Note maxx′ v1(x′ | D1) is a random variable since D1 ≡ D, x, y is random. Plugging this

back into (2.7), we have

Ey,x2,y2 [u(D2)− u(D1) | x,D] = Ey
[
max
x′

v1(x′ | D1)
]
. (2.9)

Further plugging into (2.6), we have

v2(x | D) = v1(x | D) + Ey
[
max
x′

v1(x′ | D1)
]
. (2.10)

This is the two-step lookahead value function.

• In general, a k-step lookahead value function is

vk(x | D) = Ey,x2,y2,...,xk,yk [u(Dk)− u(D) | x,D] (2.11)

= Ey,x2,y2,...,xk,yk [u(Dk)− u(D1) + u(D1)− u(D) | x,D] (2.12)

= v1(x | D) + Ey[max
x′

vk−1(x′ | D1)]. (2.13)

This is precisely the format of Bellman equation [90].

To expand the recursion, we can write

vk(x | D) = v1(x | D) + Ey
[

max
x2
{v1(x2 | D1) + Ey2 [max

x3
{v1(x3 | D2) + · · · }]}

]
. (2.14)

16



We can see the computation of k-step lookahead value function requires alternately nested

maximization and expectation. For most real problems of interest, such as the one we study

in this thesis, this quantity is computationally intractable.

In practice, what people do is simply one-step lookahead (or two-step lookahead if possible),

ignoring the utility beyond this short horizon. Such myopic decisions can be quite suboptimal,

translating to considerable loss (or waste) of money and other resources in real applications.

The central topic of this thesis is efficient and nonmyopic approximations to the Bayesian

optimal policies in various sequential experimental design settings.

All above derivation is based on the budgeted setting, where the decision horizon is fixed.

However, we may also encounter cost effective setting where the process terminates only

when a certain utility threshold is reached (see Chapter 5).

2.4 Related Research Literature

Sequential experimental design is a special case of general sequential decision making, for

which extensive literature can be found under various nomenclatures or perspectives. In this

section, we discuss a few most related ones.

2.4.1 Markov Decision Process

A Markov decision process (mdp) [43, 90] is defined by a 4-tuple (S,A, P,R), where S is the

state space, A is the action space, P (s, a, s′) is the probability of transitioning to state s′

when taking action a at state s, and R(s, a, s′) is a reward function that dictates the reward

17



of transitioning to state s′ after taking action a at state s. There could be a set of start

states S0 and/or terminal states ST ⊆ S. The goal in solving an mdp is to design a policy

π : S 7→ A, such that the expected reward following the policy from any start state to any

terminal state is maximized.

Sequential experimental design as defined previously can be formulated as an mdp. In

particular, the state space S = 2X×Y is all possible subsets of Cartesian product of the

design space and response space, that is, the observed set D is the current state of the

mdp. The action space is simply the design space X . The transition probability is implied

by the Bayesian model. In particular, P (D, x,D1) = p(y | x,D). Finally, the reward

function R(D, x,D1) = u(D1)− u(D) is precisely the marginal utility of evaluating x. If the

experimental design has a budget t, then the set of terminal states would be ST = {D ∈ S :

|D| = t} (assuming the initial set D0 = ∅, or we can simply exclude D0 when counting the

cardinality of D).

What is special about sed is that the state space S is dauntingly large, or even infinite.

Traditional dynamic programming approaches such as value iteration or policy iteration are

not feasible in this setting.

2.4.2 Reinforcement Learning

We have shown that sed can be formulated as a Markov decision process, under the assumption

that the transition model is known. However, in practice, this is often not the case. In fact,

in all sed problems we are going to study here, the transition model is not known. When

we do not make assumptions on the transition model of the mdp, we land in the regime of

reinforcement learning (rl). In fact, the value function vk(x | D) precisely corresponds to

18



the action values in rl terminology, often denoted as Q functions. rl is an important field

in artificial intelligence, and has enjoyed tremendous success in recent years, especially in

game playing [66, 84, 85]. A comprehensive treatment of rl can be found in [90].

While it is possible to solve sed problems with a reinforcement learning approach in some

special settings, we focus on model-based policy design in this thesis. We will discuss a

setting where an rl approach might be appropriate in the chapter of future work.

2.4.3 Active Learning

Machine learning by default is passive, that is, the learner passively receives whatever examples

are presented, typically i.i.d. samples, without control over what examples to learn from.

However, in cases where data labeling is expensive, we may want to allocate budget only to

labeling the most informative instances. This is the motivation of active learning: the learner

“actively” chooses what data to label in an iterative fashion, with the goal of learning the

concept with minimum labeling cost. There is extensive research literature on active learning.

A notable survey can be found in [80].

Active learning can be perfectly formulated as an sed problem, with a utility function

measuring, e.g., the mutual information between the chosen locations in D and the unknown

function f [52]. In fact, the methodology introduced in Chapter 6 is applicable to active

learning.

19



Chapter 3

Budgeted Active Search

In active search, we seek to sequentially inspect data so as to discover members of a rare,

desired class. The labels are not known a priori but can be revealed by querying a costly

labeling oracle. The goal in budgeted setting is to design an policy to sequentially query

points to find as many valuable points as possible under a labeling budget. In this chapter,

“active search” always refers to budgeted setting. Several real-world problems can be naturally

posed in terms of active search; drug discovery, fraud detection, and product recommendation

are a few examples. A successful active search policy faces the fundamental dilemma between

exploration and exploitation; i.e., whether to search for new regions of valuable points

(exploration) or take advantage of the currently most-promising regions (exploitation).

Previous work developed policies for budgeted active search by appealing to Bayesian decision

theory [26, 27]. [27] derived the optimal policy in this framework with a natural utility

function. Not surprisingly, realizing this policy in the general case requires exponential

computation. To overcome this intractability, the authors of that work proposed using myopic

lookahead policies in practice, which compute the optimal policy only up to a limited number

of steps into the future. This defines a family of policies ranging in complexity from completely

greedy one-step lookahead to the optimal policy, which looks ahead to the depletion of the

20



entire budget. The authors demonstrated improved performance on active search over the

greedy policy even when looking just two steps into the future, including in a drug-discovery

setting [25]. The main limitation of these strategies is that they completely ignore what can

happen beyond the chosen horizon, which for typical problems is necessarily limited to ` ≤ 3,

even with aggressive pruning.

The contributions of this chapter are two-fold. First, we prove that no polynomial time policy

for active search can have nontrivial approximation ratio with respect to the optimal policy

in terms of expected utility. This extends the result in [27] that myopic approximations to

the optimal policy cannot approximate the optimal policy. The proof of this theorem is

constructive, creating a family of explicitly difficult active search instances and showing that

no polynomial time algorithm can perform well compared to the optimal (exponential cost)

policy on these.

Second, we introduce a novel nonmyopic policy for active search that considers not only the

potential immediate contribution of each unlabeled point but also its potential impact on

the remaining points that could be chosen afterwards. Our policy automatically balances

exploitation against exploration consistent with the labeling budget without requiring any

parameters controlling this tradeoff. We also develop an effective strategy for pruning

unlabeled points by bounding their potential impact on the search problem. We compare our

method with several baselines by conducting experiments on numerous real datasets spanning

several domains including citation networks, materials science, and drug discovery. Our

results thoroughly demonstrate that our policy typically significantly outperforms previously

proposed active search approaches.

21



3.1 Problem Definition

Suppose we are given a finite domain of elements X , {xi}. We know that there is a

rare subset R ⊂ X , the members of which are considered valuable, but their identities are

unknown a priori. We will call the elements of R targets or positive items. Assume that there

is an oracle that can determine whether a specified element x ∈ X is a target, producing the

binary output y , f(x) = 1{x ∈ R}. The oracle, however, is assumed to be expensive and

may only be queried t times. We seek to design a policy to sequentially query elements to

maximize the number of targets found.

We will express our preference over different sets of observations D ,
{

(xi, yi)
}
through a

simple utility:

u(D) ,
∑

yi∈D yi, (3.1)

which simply counts the number of targets in D. Then, the problem is to sequentially

construct a set of t observed points D with the goal of maximizing u(D). Throughout this

work, we use a subscript to specify a set of observed data after i ≤ t queries, defining

Di ,
{

(xj, yj)
}i
j=1

.

3.2 Bayesian Optimal Policy

Following previous work, we consider the active search problem in the standard Bayesian

decision framework. Assume we have a probabilistic classification model that provides the

posterior probability of a point x belonging to R, given observed data D: Pr(y = 1 | x,D).

22



Recall that we are allowed to perform t labeling queries, and suppose we are at some iteration

i for i ≤ t; having already observed i− 1 examples, Di−1. We wish to submit the ith item to

the oracle. Bayesian decision theory compels us to select the item that if we evaluate next

maximizes the expected utility of the final observed dataset:

x∗i = arg max
xi∈X\Di−1

E
[
u(Dt) | xi,Di−1

]
. (3.2)

In other words, we choose a point x∗i maximizing the expected number of targets found

at termination. Unfortunately, as we shall see later, computing E
[
u(Dt) | xi,Di−1

]
is

computationally impractical.

To better understand the optimal policy, consider the case i = t, so we already have t− 1

observations Dt−1 and there is only one more query left. The expected utility is

E
[
u(Dt) | xt,Dt−1

]
=
∑

yt
u(Dt) Pr(yt | xt,Dt−1) = u(Dt−1) + Pr(yt = 1 | xt,Dt−1). (3.3)

Note u(Dt−1) is a constant, since Dt−1 was already observed. Thus, when there is one query

remaining, the optimal decision is to greedily choose the remaining point with maximum

probability of being a target.

When two or more queries are left, the optimal policy is not as trivial. The challenge is that

after the first choice, the probability model changes, affecting all future decisions. Below, we

show the expected utility for i = t− 1.

E
[
u(Dt) | xt−1,Dt−2

]
= u(Dt−2) + Pr(yt−1 = 1 | xt−1,Dt−2) +

Eyt−1

[
max
xt

Pr(yt = 1 | xt,Dt−1)
]
. (3.4)

23



This expression has an intuitive interpretation. First, we have the reward for the data already

observed, u(Dt−2). The second term is the expected reward contribution from the point xt−1

under consideration, Pr(yt−1 = 1 | xt−1,Dt−2). Finally, the last term is the expected future

reward, which is the expected reward to be gathered on the next step; from our previous

analysis, we know that this will be maximized by a greedy selection (3.3). These latter two

terms can be interpreted as encouraging exploitation and exploration, respectively, with the

optimal second-to-last query.

In general, we can compute expected utility (3.2) at time i ≤ t recursively as [27]:

E
[
u(Dt) | xi,Di−1

]
= u(Di−1) + Pr(yi = 1 | xi,Di−1)

︸ ︷︷ ︸
exploitation, < 1

+

Eyi
[
maxx′ E

[
u(Dt \ Di) | x′,Di

]]

︸ ︷︷ ︸
exploration, <t−i

. (3.5)

Note if we denote vk(xi | Di−1) ≡ E[u(Dt)− u(Di−1) | xi,Di−1] and vk−1(x′ | Di) = E[u(Dt \

Di) | x′,Di−1] for k = t− i + 1, we recover the general form of Bellman equation (2.13) as

introduced in 2.3. It is easy to show that the time complexity for computing (3.5) is O
(
(2n)`

)
,

where ` = t− i+ 1 is the lookahead and n is the total number of unlabeled points.

This exponential running time complexity makes the Bayeisan optimal policy infeasible to

compute, even for small-scale applications. A typical workaround is to pretend there are only

a few steps left in the search problem at each iteration, and sequentially apply a myopic

policy (e.g., (3.3) or (3.4)). We will refer to these policies as the one-step and two-step myopic

policies, respectively, and more generally to the `-step myopic policy, with ` < t− i+ 1.

24



Since these myopic approaches cannot plan more than ` steps ahead, they can underestimate

the potential benefit of exploration. In particular, the potential magnitude of the exploration

term in (3.5) depends linearly on the budget, whereas in an `-step myopic policy, the

magnitude of the equivalent term can go no higher than a fixed upper bound of `. In fact, [27]

showed via an explicit construction that the expected performance of the `-step policy can

be arbitrarily worse than any m-step policy with ` < m, exploiting this inability to “see past”

the horizon. When following this suggestion, we must thus trade off the potential benefits of

nonmyopia and the rapidly increasing computational burden of lookahead when choosing a

policy.

3.3 Hardness of Approximation

We extend the above hardness result to show that no polynomial-time active search policy

can be a (constant factor) approximation algorithm with respect to the optimal policy, in

terms of expected utility. In particular, under the assumption that algorithms only have

access to a unit cost conditional marginal probability Pr(y = 1 | x,D) for any x and D, where

|D| is less than the budget,3 then:

Theorem 1. There is no polynomial-time active search policy with a constant factor approx-

imation ratio for optimizing the expected utility.

We prove this theorem in Appendix A. The main idea is to construct a class of instances

where a small “secret” set of elements encodes the locations of a large “treasure” of targets.

The probability of revealing the treasure is vanishingly small without discovering the secret
3The optimal policy operates under these restrictions.

25



set; however, it is extremely unlikely to observe any information about this secret set with

polynomial-time effort.

Despite the negative result of Theorem 1, we may still search for policies that are empirically

effective on real problems. In the next section, we propose a novel alternative approximation

to the optimal policy (3.2) that is nonmyopic, computationally efficient, and shows impressive

empirical performance.

3.4 Efficient Nonmyopic Approximation

We have seen above how to myopically approximate the Bayesian optimal policy using an

`-step-lookahead approximate policy (3.5). Such an approximation, however, effectively

assumes that the search procedure will terminate after the next ` evaluations, which does not

reward exploratory behavior that improves performance beyond that horizon. We propose to

continue to exactly compute the expected utility to some fixed horizon (e.g., one-step), but

to approximate the remainder of the search differently. We will approximate the expected

utility from any remaining portion of the search by assuming that any remaining points,

{xi+1, xi+2, . . . , xt}, in our budget will be selected simultaneously in one big batch. One

rationale is if we assume that after observing Di, the labels of all remaining unlabeled points

are conditionally independent, then this approximation recovers the Bayesian optimal policy

exactly. By exploiting linearity of expectation, it is easy to work out the optimal policy

for selecting such a simultaneous batch observation: we simply select the points with the

highest probability of being valuable. Another perspective is that we are using the optimal

non-adaptive policy to approximate the optimal adaptive policy beyond the fixed horizon.

26



The resulting approximation is

max
x′

E
[
u(Dt\Di) | x′,Di

]
≈∑′t−i Pr(y = 1 | x,Di), (3.6)

where the summation-with-prime symbol
∑′

k indicates that we only sum the largest k values.

Our proposed policy selects points by maximizing the approximate final expected utility

using:

E
[
u(Dt) | xi,Di−1

]
≈ u(Di−1)+ Pr(yi = 1 | xi,Di−1)+ Eyi

[∑′
t−i Pr

(
y = 1 | x,Di

)]

︸ ︷︷ ︸
exploration, <t−i

. (3.7)

We will call this policy efficient nonmyopic search (ens). As in the optimal policy, we

can interpret (3.7) naturally as rewarding both exploitation and exploration, where the

exploration benefit is judged by a point’s capability to increase the top probabilities among

currently unlabeled points. We note further that in (3.7) the reward for exploration naturally

decreases over time as the budget is depleted, exactly as in the optimal policy. In particular,

the very last point xt is chosen greedily by maximizing probability, agreeing with the true

optimal policy. The second-to-last point is also guaranteed to match the optimal policy.

Note that we may also use the approximation in (3.6) as part of a finite-horizon lookahead

with ` > 1, producing a family of increasingly expensive but higher-fidelity approximations

to the optimal policy, all retaining the same budget consciousness. The approximation in

(3.7) is equivalent to a one-step maximization of (3.6). We will see in our experiments that

this is often enough to show massive gains in performance, and that even this policy shows

clear awareness of the remaining budget throughout the search process, automatically and

dynamically trading off exploration and exploitation.

27



3.4.1 Nonmyopic Behavior

To illustrate the nonmyopic behavior of our policy, we have adapted the toy example presented

by [27]. Let I , [0, 1]2 be the unit square. We repeated the following experiment 100 times.

We selected 500 points i.i.d. uniformly at random from I to form the input space X . We

create an active search problem by defining the set of targets R ⊆ X to be all points within

Euclidean distance 1/4 from either the center or any corner of I. We took the closest point

to the center (always a target) as an initial training set. We then applied ens and the

two-step-lookahead (3.4) policies to sequentially select 200 further points for labeling.

Figure 3.1 shows a kernel density estimate of the distribution of locations selected by both

methods during two time intervals. Figures 3.1(a–b) correspond to our method; Figures

3.1(c–d) to two-step lookahead. Figures 3.1(a, c) consider the distribution of the first 100

selected locations; Figures 3.1(b, d) consider the last 100. The qualitative difference between

these strategies is clear. The myopic policy focused on collecting all targets around the

center (Figure 3.1(c)), whereas our policy explores the boundaries of the center clump with

considerable intensity, as well as some of the corners (Figure 3.1(a)). As a result, our policy

is capable of finding some of targets in the corners, whereas two-step lookahead hardly ever

can (Figure 3.1(d)). We can also see that the highest probability mass in Figure 3.1(b) is

the center, which shows that our policy typically saves many high-probability points until

the end. On average, the ens policy found about 40 more targets at termination than the

two-step-lookahead policy.

28



(a) (b)

(c) (d)

Figure 3.1: Kernel density estimates of the distribution of points chosen by ens (top) and
2-step lookahead (bottom) during two different time intervals. The figures on the left show
the kernel density estimates for the first 100 locations; the figures on the right, the last 100
chosen locations.

3.5 Implementation

In this section, we introduce the model used to estimate the probabilities of a point being

positive given a set of observations, and analyze the time complexity of our implementation.

We also introduce a pruning technique that we implemented to drastically improve the

efficiency of our proposed policy.

3.5.1 k Nearest Neighbors

In active search, the design space X is finite and response space Y is binary. We use the k

nearest neighbors (k-nn) model [15] to estimate the probability of a point being positive. The

29



general idea of k-nn for binary classification is very simple: to estimate the probability of a

point being positve, we first compute the distances of this point to every point in the observed

set D and determine the k nearest neighbors, among which the proportion of positive points

is used as an estimate of the probability.

Our setting is different from a general classification problem, in the sense that D is usually

very small (potentially even smaller than k), and we augment D in each iteration by labeling

points from a large unlabeled pool. We consider the following variant of k-nn model, first

introduced in [27]:

• Prior: in the beginning when D = ∅, we set a constant α prior belief on the prevalence

of the positive points. For example, in a drug discovery task, if chemists believe that

there are about 1% of compounds in the pool X that can bind with the biological

target, then we might set α = 0.01.

• Posterior: after some observations, the posterior probability of a point x ∈ X being

positive is estimated as follows: (1) compute the k nearest neighbors among the whole

pool; (2) if there are observations among the k points, we count the proportion of positive

as the estimate, optionally weighted by similarities; (3) if there are no observations

among the k points, we fall back to the prior belief. Mathematically,

Pr(y = 1 | x,D) =
α +

∑
x′∈LNN(x) wx′ · y′

1 +
∑

x′∈LNN(x) wx′
, (3.8)

where LNN(x) is the set of labeled examples in the k nearest neighbors of x; wx′ is the

weight of example x′, usually proportional to the similarity between x and x′; the weights

could simply be all ones for all x′. Note when LNN(x) is empty, Pr(y = 1 | x,D) = α.

30



The weights can be precomputed and saved as a sparse matrix W ⊆ Rn×n. This allows fast

updates of the posterior probabilities. To update the probability of a point i, we only need

to gather the weights with its k nearest neighbors, i.e. the nonzeros of the i’th row W [i, :],

and when a point i is observed, we only need to update the probabilities of the points that

have i in its k nearest neighbors, i.e., as indicated by W [:, i] > 0.

3.5.2 Time Complexity

The complexity of our policy (3.7) is O
(
n
(
2(n+n log n)

))
= O(n2 log n), for n = |X |, because

we need to compute the approximate expected utility for all n points, evaluate an expectation

over its label, conditioning the model and sorting the posterior probabilities in the expectation.

However, for some classification models Pr(y = 1 | x,D), observing one point will only affect

the probabilities on a small portion of the other points (e.g., in a k-nn model). We can exploit

such structure to reduce the complexity of our method by avoiding unnecessary computation.

Specifically, suppose that after observing a point we only need to update the probabilities of

at-most m other points. We can avoid repeatedly sorting the probabilities of every unlabeled

point when computing the score of each candidate point. Once the current probabilities

are sorted (O(n log n)), we only need to update m probabilities and sort these as well

(O(m logm)); now we can merge both lists to get the top t− i posterior probabilities in time

O(t− i), where i is the index of current iteration. In summary, these tricks can reduce the

computational complexity to O
(
n(log n+m logm+ t)

)
. We can see the complexity is about

the same as two-step lookahead, which is O
(
n(log n+m)

)
when using the same tricks.

31



3.5.3 Pruning the Search Space

To further reduce the computational complexity, we can use a similar strategy as suggested

by [27] to bound the score function (3.7) and prune points that cannot possibly maximize our

score. We consider the same two assumptions proposed by these authors. First, observing a

new negative point will not raise the probability of any other point being a target. Second,

we are able to bound the maximum probability of the unlabeled points after conditioning on

a given number of additional targets; that is, we assume there is a function p∗(n,D) such that

p∗(n,D) ≥ max
x∈X\D

Pr(y = 1 | x,D ∪D′,∑y′∈D′y
′ ≤ n).

That is, the probability of any unlabeled point can become at most p∗(n,D) after further

conditioning on n or fewer additional target points.

Consider an unlabeled point x at time i, and define π(x) = Pr(y = 1 | x,Di) for the remainder

of this discussion. The score (3.7), denoted f(x) here for simplicity, can be upper bounded by

f(x) ≤ π(x) ·
(
1 + (t− i)p∗(1,Di)

)
+

(1− π(x)) ·
(∑′

t−i Pr(y′ = 1 | x′,Di)
)
, U(π(x)).

Note this upper bound is only a function of the current probability π. Let x+ be the point

with maximum probability. Then f(x+) is certainly a lower bound of maxx f(x). Hence,

those points satisfying U
(
π(x)

)
< f(x+) can be safely removed from consideration. Solving

this inequality, we have

π(x) <
f(x+)−∑′t−i Pr(y′ = 1 | x′,D)

1 + p∗(1,D)(t− i)−∑′t−i Pr(y′ = 1 | x′,D)
. (3.9)

32



Then, all points with current probability lower than the rhs of (3.9) can be removed from

consideration. We will show empirically that a large fraction of points can often be pruned

on massive datasets.

3.6 Related Work

Active search can be seen as a specific realization of active learning (al). Though highly

related, al and as have fundamentally different goals: learning an accurate model versus

retrieving positive examples. One might argue that as can be reduced to al by first learning

the decision boundary, then just collecting the predicted positive examples. However, it is

often the case that the given budget is far from enough for an accurate model to be learned,

and we must have more-elegant approaches to balance exploration and exploitation. Good al

policies could perform poorly in as: [99] compared several variants of uncertainty sampling

(arguably one of the most popular al policies) with greedy as policies, and demonstrated

that the greedy policies performed much better in terms of retrieving active compounds. In

fact, we will show later in the experiments that a k-nn classification model trained on 10

times more data still retrieved significantly fewer positives than a simple greedy AS policy.

The multi-armed bandit (mab) problem shares some similarities with active search, where

selecting an item can understood as “pulling an arm.” However, in active search the items are

correlated, and, critically, they should never be played twice. Despite the difference, we note

that our ens policy is somewhat similar to the knowledge gradient policy introduced by [23].

Active search can be seen as a special case of Bayesian optimization (see Chapter 6) with

binary observations and cumulative reward. Several nonmyopic policies have been proposed

33



for Bayesian optimization in the regression setting (e.g., [34, 56, 105]), and our method

is spiritually similar to the recently propopsed glasses algorithm [35], except they use a

heuristic batch as future estimate, but we use an optimal batch.

[92] proposed a method called GP-select to solve a class of problems the authors call

“adaptive valuable item discovery,” which generalizes active search to the regression setting.

gp-select employs a Gaussian process regression model in a manner inspired by the Gaussian

process upper confidence bound (gp-ucb) algorithm [88]. A parameter must be specified to

balance exploration and exploitation, whereas our method automatically and dynamically

trades off these quantities. The method is also critically tied to Gaussian process regression

as the underlying model, which is inappropriate for classification. Our decision-theoretic

approach does not make any assumptions about the classification model other than being

probabilistic.

Active search can also be seen as a special case of (partially observable) Markov decision

processes ((po)mdps), for which there are known hardness results. [77], for example, defined

the class of so-called “purely epistemic” mdps (emdps), where the state does not evolve

over time. The authors showed that the optimal policy for these problems cannot admit

polynomial-time constant approximations. Unfortunately, these hardness results, for the very

rich class of emdps are not trivially transferred to the more-specific active search problem.

Our proposed approximation is similar in nature to the active search policy proposed by

[95], which only considered the effect of raising probabilities after observing a positive label,

and did not consider the budget. Rather, the proposed score always encourages maximal

exploration, in opposition to the optimal policy.

34



There has been some attention to active search in the graph setting where the input domain

X is the nodes of a graph [26, 63, 73, 95]. Our method does not restrict the input space.

Further, the classification models used in these settings are often difficult to scale to large

datasets, e.g., requiring the pseudoinverse of the graph Laplacian.

Finally, variations on the active search problem have also been considered. [62] proposed the

active area search problem, wherein a continuous function is sampled to discover regions with

large mean value, and [64] extended this idea to define the more-general active pointillistic

pattern search problem. These settings do not allow querying for labels directly and offer no

insight to the core active search problem.

3.7 Experiments

We implemented our approximation to the Bayesian optimal policy with the matlab active

learning toolbox,4 and have compared the performance of our proposed ens policy with several

baselines. First we compare with the myopic one-step (greedy) and two-step approximations

to the Bayesian optimal policy, presented in (3.3) and (3.4). Note that [27] and [25] thoroughly

compared the one- and two-step policies, with the finding that the less-myopic two-step

algorithm usually performs better in terms of the number of targets found, as one would

expect. In our experiments we will mainly focus on comparing our algorithm with myopic

two-step approximate policy.

We also consider a simple baseline which we call random-greedy (rg). Here we randomly

select points to query (exploration) during the first half of the budget, and select the remainder

using greedy selection (exploitation). Although naïve, this policy adapts to the budget.
4https://github.com/rmgarnett/active_learning

35



Table 3.1: CiteSeerx (left) and bmg (right) data: Average number of targets found by the
one- and two-step myopic policies and ens with different five budgets, varying from 100 to
900, at specific time steps. The performance of the best method at each time waypoint is in
bold.

CiteSeerx data

query number

policy 100 300 500 700 900

rg 19.7 60.0 104 140 176

ims 26.3 86.3 147 214 281

one-step 25.5 80.5 141 209 273
two-step 24.9 89.8 155 220 287

ens–900 25.9 94.3 163 239 308
ens–700 28.0 105 188 259
ens–500 28.7 112 189
ens–300 26.4 105
ens–100 30.7

bmg data

query number

policy 100 300 500 700 900

rg 48.6 144 243 336 427

ims 93.6 276 451 629 799

one-step 90.8 273 450 633 798
two-step 91.0 273 452 632 802

ens–900 89.0 270 453 635 815
ens–700 91.3 276 460 645
ens–500 92.4 279 466
ens–300 92.8 279
ens–100 94.5

We further compare with the score function proposed by [95], which we refer to as ims:

ims(x) = Pr(y = 1 | x,D)
(
1 + α im(x)

)
; (3.10)

where im(x) measures the “expected impact”, the sum of the raised probabilities x results

in if it is positive. Note that it is difficult to determine the tradeoff parameter α without

(expensive) cross validation. The empirical results in [95] indicate that α = 10−4 performs

well on average; we will fix this value in our experiments.

The probability model Pr(y = 1 | x,D) we will adopt is the k-nearest-neighbor (k-nn)

classifier as described in 3.5.1. Note ims was proposed together (but orthogonally) with a

graph model for the probability, which is computationally infeasible (O(n3)) for our datasets.

So we also use k-nn model for ims.

36



0 100 200 300 400 500

0

50

100

150

200

number of queries

nu
m

be
r

of
ta

rg
et

s
fo

un
d ens

two-step
ims
one-step
rg

Figure 3.2: The learning curve of our policy and other baselines on the neurips dataset.

3.7.1 Finding neurips Papers From CiteSeerx

For our first real data experiment, we consider a subset of the CiteSeerx citation network,

first described in [27]. This dataset comprises 39 788 computer science papers published in

the top-50 most-popular computer science venues. We form an undirected citation network

from these papers. The target class is papers published in the neurips proceedings; there are

2 190 such papers, 5.5% of the whole dataset. Note that distinguishing neurips papers in the

citation network is not an easy task, because many other highly related venues such as icml,

aaai, ijcai, etc. are also among the most-popular venues. A feature vector for each paper is

computed by performing graph principal component analysis [22] on the citation network

and retaining the first 20 principal components.

We select a single target (i.e., a neurips paper) uniformly at random to form an initial

training set. The budget is set to t = 500, and we use k = 50 in the k-nn model. These

parameters match the choices in [27]. We use each policy to sequentially select t papers for

labeling. The experiment was repeated 20 times, varying the initial seed target. Figure 3.2

shows the average number of targets found for each method as a function of the number of

37



queries. We first observe that the ranking of the performance is ens, two-step, ims, one-step,

and rg, and our policy outperforms the two-step policy in this task by a large margin. The

mean difference in number of targets found at termination vs. two-step is 34.6 (189 vs. 155),

an improvement on average of 22%. A two-sided paired t-test testing the hypothesis that the

average difference of targets found is zero returns a p-value of p < 10−4, and a 95% confidence

interval on the increase in number of targets found of [19.80, 49.30].

Another interesting observation is that during the initial ∼80 queries, ens actually performs

worse on average than all baseline policies except rg, after which it quickly outperforms

them. This feature perfectly illustrates an automatic exploration–exploitation transition

made by our policy. As we are always cognizant of our budget, we spend the initial stage

thoroughly exploring the domain, without immediate reward. Once complete, we exploit

what we learned for the remainder of the budget. This tradeoff happens automatically and

without any need for an explicit two-stage approach or arbitrary tuning parameters.

Varying the Budget. A distinguishing feature of our method is that it always takes

the remaining budget into consideration when selecting a point, so we would expect dif-

ferent behavior with different budgets. We repeated the above experiment for budgets

t ∈ {100, 300, 500, 700, 900}, and report in Table 3.1 the average number of targets found

at these time points for each method. We have the following observations from the table.

First, ens performs better than all other baseline policies for every budget. Second, ens is

able to adapt to the specified budget. For example, when comparing performance after 100

queries, ens–100 has located many more targets than the ens methods with greater budgets,

which at that time are still strongly rewarding exploration. A similar pattern holds when

comparing other pairs of ens variations, with one minor exception.

38



Table 3.2: Number of active compounds found by various active search policies at termination
for each fingerprint, averaged over 120 active classes and 20 experiments. Also shown is
the difference of performance between ens and two-step lookahead and the results of the
corresponding paired t-test.

policy t-test results

fingerprint 100-nn rg one-step two-step ens difference p-value 95% ci

ecfp4 189 189 289 297 303 5.29 1.76× 10−3 2.01 8.56
gpidaph3 134 170 255 261 276 14.8 3.90× 10−13 11.2 18.4

3.7.2 Finding Bulk Metallic Glasses

Our next dataset considers an application from materials science: discovering novel alloys

forming bulk metallic glasses (bmgs). bmgs have numerous desirable properties, including

high toughness and good wear resistance compared to crystalline alloys. We compiled a

database of 118 678 known alloys from the materials literature (e.g., [1, 50]), an extension

of the dataset from [97]. Of these, 4 746 (∼4%) are known to exhibit glass-forming ability,

which we define to be targets. We conduct the same experiments described for the CiteSeerx

data above and show the results in Table 3.1 (on the right). We can see the results again

demonstrate our policy’s superior performance over all other methods, and its ability of

adapting to the remaining budget.

3.7.3 Drug Discovery

We further conduct experiments on a massive database of chemoinformatic data. The basic

setting is to screen a large database of compounds searching for those that show binding

activity against some biological target. This is a basic component of drug-discovery pipelines.

The dataset comprises 120 activity classes of human biological importance selected from the

39



Binding db [61] database. For each activity class, there are a small number of compounds

with significant binding activity; the number of targets varies from 200 to 1 488 across the

activity classes. From these we define 120 different active search problems. There are also

100 000 presumed inactive compounds selected at random from the zinc database [89]; these

are used as a shared negative class for each of these problems. For each compound, we

consider two different feature representations, also known as chemoinformatic fingerprints,

called ecfp4 and gpidaph3. These fingerprints are binary vectors encoding the relevant

chemical characteristics of the compounds; see [25] for more details.5 So in total we have 240

active search problems, each with more than 100 000 points, and with targets less than 1.5%.

As is standard in this setting, we compute fingerprint similarities via the Jaccard index [44],

which are used to define the weight matrix of the k-nn model from above, setting k = 100

for all the experiments. For active search policies, we again randomly select one positive

as the initial training set, and sequentially query t = 500 further points. We also report

the performance of a baseline where we randomly sample a stratified sample of size 5% of

the database (∼5 000 points, more than 10 times the budget of the active search policies).

From this sample, we train the same k-nn model, compute the active probability of the

remaining points, and query the 500 points with the highest posterior activity probability.

All experiments were repeated 20 times, varying the initial training point. Note we did not

test ims on these data due to computational expense. Our policy nominally has higher time

complexity, but our pruning strategy can reduce the computation significantly in practice, as

we show in Section 3.7.6.
5We did not conduct experiments on the maccs fingerprint. It was inferior in the findings of [25]. A

reviewer of [44] noted that it is no longer used, due to clear underperformance compared to, e.g., ecfp4 and
gpidaph3.

40



0 100 200 300 400 500

−40

−20

0

20

number of queries

di
ffe

re
nc

e
in

ut
ili
ty

mean difference
95% CI

(a)

0 100 200 300 400 500

−40

−20

0

20

number of queries

di
ffe

re
nc

e
in

ut
ili
ty

mean difference
95% ci

(b)

Figure 3.3: The average difference in cumulative targets found between ens and the two-step
policy, averaged over 120 activity classes and 20 experiments on (a) ecfp4 and (b) gpidaph3
fingerprint.

Table 3.2 summarizes the results. First we notice that all active search policies perform much

better than the recall of a simple classification algorithm, even though they observe less than

one-tenth the data. Interestingly, even the naïve random-greedy (rg) policy performs much

better than this baseline, albeit much worse than other active search policies. The two-step

policy is again better than the greedy policy for both fingerprints, which is consistent with the

results reported in [25]. The ens policy performs significantly better than two-step lookahead;

a two-sided paired t-test overwhelmingly rejects the hypothesis that the performance at

termination is equal in both cases.

Figure 3.3 shows the mean difference in cumulative targets found between ens and the two-

step policy. Again, we very clearly observe the automatic trade-off between exploration and

exploitation by our method. In the initial stage of the search, we explore the space without

much initial reward, but around query 100 or 200, our algorithm switches automatically

to exploitation, outperforming the myopic policy significantly at termination. The mean

difference curves for the other datasets are similar.

41



3.7.4 Compare with Naive Exploration/Exploitation Approaches

Active search can be seen as a special paradigm of active learning where the key challenge

is to carefully balance exploration (learning) and exploitation (search). If we have a fully

learned model, then active search is trivial, since we only need to retrieve the points with

highest probabilities. In practice, the budget might never be enough for a model to be fully

learned, that’s why we need to carefully allocate the budget for learning and search. One

naive approach is to first spend some budget for learning, then use the remaining budget for

search. The results in Table 3.2 have shown that this naive approach is much worse than

active search policies even granted 10 times more budget just for learning. Here we conduct

more experiments in this regard motivated by the reviewers suggestions 6.

First, we implemented a strategy proposed by one of the reviewers, which we call uncertain-

then-greedy (utg). We first perform uncertainty sampling (arguably the most-popular active

learning method) for a portion of the budget, then switch to greedy search. The transition

point is controlled by a hyperparameter r ∈ (0, 1): the first 100r% of the budget is used for

active learning (exploration), and the remaining 100(1− r)% is used for exploitation. We ran

this policy on all three types of datasets described previously for r ∈ {0.1, 0.2, . . . , 0.9}, with

a batch size of 1 and budget T = 500. We repeated this experiments the same number of

times with the same initial random seeds used for the other policies. The results are plotted

in Figure 3.4, comparing with one- and two-step lookahead and ENS. We can see that on

the CiteSeerx dataset this naïve approach indeed beats the greedy one-step lookahead policy,

and approaches the performance of two-step lookahead when r = 0.8, but performs far worse

than ENS; on the other two datasets, utg does not show any advantage. Although we could
6This part of work is done during the rebuttal of our submission to neurips 2018 on batch active search,

which is the content of Chapter 4. But we only used the sequential setting for this rebuttal, so we move the
content to this chapter.

42



0.2 0.4 0.6 0.8

150

160

170

180

190

transition point

nu
m

be
r

of
ta

rg
et

s
fo

un
d

utg
one-step
two-step
ens

(a)

0.2 0.4 0.6 0.8

260

280

300

transition point

nu
m

be
r

of
ta

rg
et

s
fo

un
d

utg
one-step
two-step
ens

(b)

0.2 0.4 0.6 0.8

200

250

300

transition point

nu
m

be
r

of
ta

rg
et

s
fo

un
d

utg
one-step
two-step
ens

(c)

Figure 3.4: Comparion of active search policies with a naive exploration-exploitation approach
called uncertain-then-greedy (utg), which performs uncertainty sample for the first 100r% of
the budget and then greedy sampling in the remaining iterations, where r is a hyperparameter
controlling the transition point. (a) CiteSeerx Dataset. (b) bmgs dataset. (c) Drug discovery
datasets.

probably strengthen this baseline with more-advanced active learning or active search policies,

it will never be clear how to best choose the transition hyperparameter r. Our approach, on

the other hand, automatically transitions from exploration to exploitation in line with the

optimal policy.

43



3.7.5 Compare with UCB-Style Policy

Finally, we have also considered the following ucb-style [3] score function:

α(x,D) = π + γ
√
π(1− π), (3.11)

where π = Pr(y = 1 | x,D) and γ is a tradeoff parameter. The ucb score function is very

popular and is the essence of the methods in [88, 92] developed for Gaussian processes,

including gp-select. We considered various γ values and our experiments show that it is

no better than two-step lookahead.

The results of this policy (maximizing α(x,D)) varying the hyperparameter γ are shown in

Figure 3.5, averaged over 20 experiments. Note with a fixed γ, the score α is maximized at

some probability π = p∗; it is easy to derive that

p∗ =
1

2
+

1

2
√
γ2 + 1

(3.12)

by setting the derivative to zero. To better present the results, we use p∗ ∈ [0.5, 1] as the

hyper-parameterization of the score in Figure 3.5. In summary, on the CiteSeerx dataset, as

shown in Figure 3.5(a), the performance is maximized at some p∗ near 0.6, but the curve

does not seem to be smooth. When we average the performance on 2 400 experiments on the

ecfp4 data, as shown in Figure 3.5(c), we see that the α score is monotonically performing

better with larger p∗ (or smaller γ), and converges to the greedy policy (p∗ = 1).

44



0.5 0.6 0.7 0.8 0.9 1

130

140

150

p∗

av
er

ag
e

nu
m

be
r

of
ta

rg
et

s

ucb-style
two-step

(a) CiteSeerx data

0.5 0.6 0.7 0.8 0.9 1

300

350

400

450

p∗

av
er

ag
e

nu
m

be
r

of
ta

rg
et

s

ucb-style
two-step

(b) bmg data

0.5 0.6 0.7 0.8 0.9 1

150

200

250

300

p∗

av
er

ag
e

nu
m

be
r

of
ac

ti
ve

s

ucb-style
two-step

(c) ecfp4 data

Figure 3.5: Number of targets found by the ucb-style policy (3.11), as a function of the
hyperparameter p∗ as derived in (3.12), averaged over 20 experiments. Note for CiteSeerx
and bmg datasets, the grid size of p∗ is 0.01, but for ecfp4, we can only afford grid size of
0.1. To put these results into perspective, we also show the two-step performances by the red
horizontal line, indicating two-step performs better than the ucb-style policy on all three
domains. All these results are with budget 500.

3.7.6 Pruning Effectiveness

To investigate how pruning can improve the efficiency of computing the policy, we computed

the average number of pruned points across all 120× 20× 500 = 3 000 000 iterations of active

search, for each fingerprint. Table 3.3 shows the effectiveness of pruning. On average about

45



Table 3.3: Average number of pruned points in each iteration for the two chemical datasets.

fingerprint # pruned # total pruned %

ecfp4 94 995 100 518 94.5%
gpidaph3 93 173 100 518 92.7%

93% of the unlabeled points are pruned, dramatically improving the computational efficiency

by approximately a corresponding linear factor. The time for each experiment was effectively

reduced from on the order of one day to that of one hour.

3.8 Conclusion

In this chapter we proved the theoretical hardness of active search and proposed an well-

motivated and empirically better-performing policy for solving this problem. In particular,

we proved that no polynomial-time algorithm can approximate the expected utility of the

optimal policy within a constant approximation ratio. We then proposed a novel method,

efficient nonmyopic search (ens), for the active search problem. Our method approximates

the Bayesian optimal policy by computing, conditioned on the location of the next point, how

many targets are expected at termination, if the remaining budget is spent simultaneously.

By taking the remaining budget into consideration in each step, we are able to automatically

balance exploration and exploitation. Despite being nonmyopic, ens is efficient to compute

because future steps are flattened into a single batch, in contrast to the recursive simulation

required when computing the true expected utility. We also derived an effective pruning

strategy that can reduce the number of candidate points we must consider at each step, which

can further improve the efficiency dramatically in practice. We conducted a massive empirical

46



evaluation that clearly demonstrated superior overall performance on various domains, as

well as our automatic balance between exploration and exploitation.

Given the hardness result we proved, in general there is little point to require more of an

algorithm than superior empirical performance. However, one exciting future direction is to

understand, under what conditions (e.g., some assumption about the structure of problem

instances) we can find efficient algorithms with guarantees.

47



Chapter 4

Batch Budgeted Active Search

Chapter 3 and all previous investigations on active search focused on sequential active search

(sas), where only one point is queried at a time. However, in many real applications, we

can query a batch of multiple points simultaneously. For example, modern high-throughput

screening technologies for drug discovery can process microwell plates containing 96+ com-

pounds at a time. No policies designed for this batch active search setting are currently

available.

In this chapter, we investigate batch active search (bas) in budgeted setting from both

theoretical and practical perspectives. We first derive the Bayesian optimal policy for bas,

and show that its time complexity in general is dauntingly high, except in the trivial one-step

(myopic) case. We then prove an asymptotic lower bound on the expected performance gap

between the optimal sequential and batch policies.

Next we consider practical concerns such as effective policy design. We generalize the efficient

nonmyopic sequential policy (ens) as introduced in Chapter 3 to the batch setting. The

nonmyopia of ens is automatically inherited, but efficiency is lost as the batch version involves

combinatorial optimization (i.e., set function maximization). We propose and study two

48



efficient approximation strategies. The first strategy is a sequential simulation, where we

simulate sequential ens to construct a batch using a fictional labeling oracle. The second

strategy is greedily maximizing the marginal gain to our batch ens score, motivated by our

conjecture that the inherent batch score is submodular. We prove that sequential simulation

of the one-step Bayesian optimal policy with a pessimistic oracle (i.e., one that always outputs

negative labels) near-optimally maximizes the probability that at least one point in the batch

is positive. This theoretical support of pessimism is in contrast to other settings such as

Bayesian optimization, where pessimism has been used as a heuristic for batch policies.

We also improve the pruning techniques developed in Chapter 3, considerably to reduce the

computational overhead of our proposed policies in practice. We demonstrate a connection

with lazy evaluation [18] and show that our pruning strategy can provide a speedup of over

50 times in a drug discovery setting.

Finally, we conduct thorough experiments on data from three domains: a citation network,

material science, and drug discovery. In total we study 14 policies: the one-step optimal batch

policy, 12 sequential simulation policies (three sequential policies combined with four fictional

oracles), and greedy maximization of the batch version of ens. We observe that ens-based

(nonmyopic) policies almost always provide a significant improvement in performance. Two

policies are particularly notable: sequential simulation of ens with a pessimistic oracle and

greedy maximization of batch ens. The latter is shown to be more robust for larger batch

sizes.

49



4.1 Bayesian Optimal Policy

We begin our investigation by generalizing the Bayesian optimal policy for sequential active

search to batch setting. Recall we express our preference over different datasets D =
{

(xi, yi)
}

through a natural utility: u(D) =
∑

yi∈D yi, which simply counts the number of targets in

D. Occasionally we will use the notation u(Y ) for u(D) when D = (X, Y ). We now consider

the problem of sequentially choosing a set of T (a given budget) points D with the goal of

maximizing u(D). In the batch setting, for each query we must select a batch of b points and

will then observe all their labels at the same time. We use Xi = {xi,1, xi,2, . . . xi,b} to denote a

batch of points chosen during the ith iteration, and Yi = {yi,1, yi,2, . . . yi,b} the corresponding

labels. We use Di =
{

(Xk, Yk)
}i
k=1

to denote the observed data after i ≤ t batch queries,

where t = dT/be.

Again we assume a probability model P is given, providing the posterior marginal probability

Pr(y | x,D) for any point x ∈ X and observed dataset D. At iteration i+1 (given observations

Di), the Bayesian optimal policy chooses a batch Xi+1 maximizing the expected utility at

termination, recursively assuming optimal continued behavior:

Xi+1 = arg max
X

E
[
u(Dt \ Di) | X,Di

]
. (4.1)

Note that we use slightly different notations from Chapter 3 by excluding Di directly from

Dt, since the utility function is additive and u(Di) is a known constant at this point.

To derive the expected utility, we again adopt the standard technique of backward induction.

The base case is when only one batch is left (i = t− 1). The expected utility resulting from a

50



proposed final batch X is then

E
[
u(Dt \ Dt−1) | X,Dt−1

]
= EY |X,Dt−1

[
u(Y )

]
=
∑

x∈X Pr(y = 1 | x,Dt−1), (4.2)

where EY |X,Di is the expectation over the joint posterior distribution of Y (the labels of

X) conditioned on Di. In this case, designing the optimal batch (4.1) by maximizing the

expected utility is trivial: we select the points with the highest probabilities of being targets,

reflecting pure exploitation. This optimal batch can then be found in O(n log b) time using,

e.g., min-heap of size b.

In general, when i ≤ t− 1, the expected terminal utility resulting from choosing a batch X

at iteration i+ 1 and acting optimally thereafter can be written as a Bellman equation as

follows:

E
[
u(Dt \Di) | X,Di

]
=
∑

x∈X Pr(y = 1 | x,Di)+EY |X,Di
[
maxX′ E

[
u(Dt \Di+1) | X ′,Di+1

]]
,

(4.3)

where the first term represents the expected utility resulting immediately from the points in

X, and the second part is the expected future utility from the following iterations.

The most interesting aspect of the Bayesian optimal policy is that these immediate and

future reward components in (4.3) can be interpreted as automatically balancing exploitation

(immediate utility) and exploration (expected future utility given the information revealed by

the present batch).

However, without further assumptions on the joint label distribution P , exact maximization

of (4.3) requires enumerating the whole search tree of the form Di → Xi+1 → Yi+1 → · · · →

Xt → Yt. The branching factor of the X layers is
(
n
b

)
, as we must enumerate all possible

51



batches. The branching factor of the Y layers is 2b, as we must enumerate all possible

labelings of a given batch. So the total complexity of a naïve implementation computing

the optimal policy at iteration i+ 1 would be a daunting O
(
(2n)b(t−i)

)
. The running time

analysis in [27] is a special case of this result where b = 1.

The optimal policy is clearly computationally infeasible, so we must resort to suboptimal

policies to proceed in practice. One reasonable and practical alternative is to adopt a myopic

lookahead approximation to the optimal policy. A greedy (one-step lookahead) approximation,

which always maximizes the expected marginal gain in (4.2), constructs each batch by

selecting the points with highest probability of being a target. We will refer to this policy as

greedy-batch, and this will serve as a natural baseline batch policy for active search.

4.2 Adaptivity Gap

For purely sequential policies (i.e., b = 1), every point is chosen based on a model informed

by all previous observations. However, for batch policies (b > 1), points are typically chosen

with less information available. For example, in the extreme case when b = T , every point in

our budget must be chosen before we have observed anything, hence we might reasonably

expect our search performance to suffer. Clearly there must be an inherent cost to batch

policies compared to sequential policies due to a loss of adaptivity. How much is this cost?

We have proven the following lower bound on the inherent “cost of parallelism” in active

search:

52



Theorem 2. There exist active search instances with budget T , such that opt1

optb
is Ω

(
b

log T

)
,

where optx is the expected number of targets found by the optimal batch policy with batch

size x ≥ 1.

Proof sketch. We construct a special type of active search instance where the location of a

large trove of positives is encoded by a binary tree, and a search policy must take the correct

path through the tree to decode a treasure map pointing to these points. We design the

construction such that a sequential policy can easily identify the correct path by walking

down the tree directed by the labels of queried nodes. A batch policy must waste a lot queries

decoding the map as the correct direction is only revealed after constructing an entire batch.

We show that even the optimal batch policy has a very low probability of identifying the

location of the hidden targets quickly enough, so that the expected utility is much less than

that of the optimal sequential policy. A detailed proof is given in Appendix B.

Thus the expected performance ratio between optimal sequential and batch policies, also

known as adaptivity gap in the literature [2], is lower bounded linearly in batch size. This

theorem is not only of theoretical interest: it can also provide practical guidance on choosing

batch sizes. Indeed, in drug discovery, modern high-throughput screening technologies provide

many choices for batch sizes; understanding the inherent loss from choosing larger batch sizes

provides valuable information regarding the tradeoff between efficiency and cost.

4.3 Efficient Nonmyopic Approximations

The greedy-batch policy is myopic in the sense that each decision represents pure exploitation:

the future reward is always assumed to be zero, and the remaining budget is not taken into

53



consideration. Here we generalize the sequential ens as introduced in Chapter 3 to the batch

setting and propose two techniques to approximately compute it.

Our proposed adaptation of ens to batch setting can be motivated with the following question:

how many targets would we expect to find if, after selecting the current batch, we spent the

entire remaining budget simultaneously? If this were the case, then the maximum future

utility could be computed without recursion:

E[u(Dt \ Di) | X,Di] =
∑

x∈X Pr(y = 1 | x,Di) +

EY |X,Di
[
maxX′:|X′|=T−b−|Di| E

[
u(Y ′) | X ′,Di, X, Y

]]
. (4.4)

Note the optimal final action simply selects the points with the highest T−b−|Di| probabilities,

allowing the expected future reward to be computed exactly and efficiently. We may use

this insight to rewrite (4.4) as (using V (X | Di) as shorthand for the expected utility from

selecting X given Di):

V (X | Di) =
∑

x∈X Pr(y = 1 | x,Di) + EY |X,Di
[∑′

T−b−|Di| Pr (y′ = 1 | x′,Di, X, Y )
]
. (4.5)

Here we have adopted the notation
∑′

s from ens in Chapter 3 to denote the sum of the top s

probabilities over the unlabeled points, x′ ∈ X \ (Di ∪X). Same as ens, the batch version’s

underlying assumption is the remaining unlabeled points after this batch are conditionally

independent, so that there is no need to recursively enumerate the search tree. This assumption

might seem unrealistic at first, but when many well-spaced points are observed, we note they

might approximately “D-separate” the remaining unlabeled points. Further, ens naturally

encourages the selection of well-spaced points (targeted exploration) in the initial state of

the search (see Figure 3.1).

54



The nonmyopia of (4.5) is automatically inherited in generalizing from sequential to batch

setting due to explicit budget awareness. Unfortunately, the efficiency of the sequential

ens policy is not preserved. Direct maximization of (4.5) still requires combinatorial search

over all subsets of size b. Moreover, to evaluate a given batch, we need to enumerate all its

possible labelings (2b in total) to compute the expectation in the second term. Accounting

for the cost of conditioning and summing the top probabilities, the total complexity would

be O
(
(2n)b n log T

)
.

We propose two strategies to tackle these computational problems below.

4.3.1 Sequential Simulation

The cost of computing the proposed batch policy has exponential dependence on the batch

size b > 1. To avoid this, our first idea is to reduce bas to sas (b = 1). We select points

one at a time to add to a batch by maximizing the sequential ens score (i.e., (4.5) with

b = 1). We then use some fictional labeling oracle L : X → {0, 1} to simulate its label and

incorporate the observation into our dataset. We repeat this procedure until we have selected

b points. Note that we could use this basic construction replacing ens by any other sequential

policy π, such as the one-step or two-step Bayesian optimal policies [27].

We will see that the behavior of the fictional labeling oracle has large influence on the behavior

of resulting search policies. Here we will consider four fictional oracles: (1) sampling, where

we randomly sample a label from its marginal distribution; (2) most-likely, where we assume

the most-likely label; (3) pessimistic, where we always believe all labels are negative; and (4)

optimistic, where always believe all labels are positive.

55



Sequential simulation is a common heuristic in similar settings like batch Bayesian optimiza-

tion, as we will discuss in detail in the next section. Here we provide some mathematical

rationale of this procedure in a special case: the one-step optimal (greedy) search policy

combined with the pessimistic oracle.

Proposition 1. The batch constructed by sequentially simulating the greedy active search

policy with a pessimistic oracle near-optimally maximizes the probability that at least one

of the points in the batch is positive, assuming that marginal target probabilities of unlabeled

points are nonincreasing when conditioning on a negative observation.

Proof sketch. We show that the probability of a batch having at least one positive is a

monotone submodular set function, and that sequentially simulating the one-step policy with

the pessimistic oracle equivalently maximizes the marginal gain of this function. Therefore,

it is near-optimal [69]. A detailed proof is as follows.

Proof. The probability of a batch B = {x1, x2, . . . , xb} having at least one positive can be

written as

g(B) = 1− Pr(y1 = 0 ∧ y2 = 0 ∧ · · · ∧ yb = 0). (4.6)

It’s easy to see g(∅) = 0, since the probability of an empty set having at least one positive is

zero. It’s also easy to see g(B) is monotone. That is, for any A ⊆ B ⊆ X , g(A) ≤ g(B). Now

we show g(B) is submodular. For any set B, define B = 0 as the event that ∀x ∈ B, its label

56



y = 0, i.e., y1 = 0 ∧ y2 = 0 ∧ · · · ∧ yb = 0. The marginal gain of any x ∈ X (with label y) is

g(B ∪ {x})− g(B)

=1− Pr(B = 0 ∧ y = 0)− (1− Pr(B = 0))

= Pr(B = 0)− Pr(B = 0 ∧ y = 0)

= Pr(B = 0)− Pr(y = 0 | B = 0) Pr(B = 0)

= Pr(y = 1 | B = 0) Pr(B = 0). (4.7)

Let A ⊆ B ⊆ X , x ∈ X \B and its label y, we have

g(A ∪ {x})− g(A) = Pr(y = 1 | A = 0) Pr(A = 0);

g(B ∪ {x})− g(B) = Pr(y = 1 | B = 0) Pr(B = 0).

Since A ⊆ B, we have Pr(B = 0) ≤ Pr(A = 0). We also have Pr(y = 1 | B = 0) ≤ Pr(y = 1 |

A = 0) due to the (very reasonable) assumption that observing more negative points does

not increase the probability of any other point being positive. Hence

g(B ∪ {x})− g(B) ≤ g(A ∪ {x})− g(A). (4.8)

Therefore g is a submodular function.

Observing (4.7), we see sequentially simulating one-step Bayesian optimal policy (i.e., choose

the point with maximum probability) with a pessimistic (always-0) fictional oracle is exactly

greedily maximizing the marginal gain of g(B). By the classical results in [69], we know this

greedy solution has approximation ratio 1− 1/e ≈ 0.6321.

57



This proposition is inspired by [93], applying Bayesian active learning to a biological appli-

cation. The goal of [93] was to find a peptide as short as possible that is substrate for two

protein-modifying enzymes. They showed that under their setting, for any set of peptides S

and the currently known shortest length `, the probability of improvement (i.e., S contains

a positive peptide shorter than `) is a submodular function, and greedy maximization is

equivalent to choosing from the peptides shorter than ` that has maximum probability of

being positive, conditioned on all previously chosen ones being negative.

Note the assumption in this proposition simply means the probability model does not involve

negative label correlations; the k-nn model used in our experiments satisfies this assumption.

With this result, it is not hard to see that sequentially simulating the greedy policy with an

optimistic oracle greedily maximizes the probability that all points in the batch are positive.

In this case, however, the corresponding set function is not submodular so we don’t know if

there are optimality guarantees.

Note we are not claiming that the objective of finding at least one positive serves as a good

basis for batch active search; actually as we will see in our experiments, this is often much

worse than other nonmyopic batch policies we propose. However, we believe this result

provides theoretical insight that could shed light on other batch policies under similar settings.

For example, this policy can be considered as an active search counterpart of a batch version

of probability of improvement for Bayesian optimization [55].

58



4.3.2 Greedy Approximation

Our second strategy is motivated by our conjecture that (4.5) is a monotone submodular

function under reasonable assumptions. If that is the case, then again a greedy batch

construction returns a batch with near-optimal score [69]. We therefore propose to use a

greedy algorithm to sequentially construct the batch by maximizing the marginal gain. That

is, we begin with an empty batch X = ∅. We then sequentially add b points by adding the

point maximizing the marginal gain:

x = arg maxx ∆V (x | X), (4.9)

where

∆V (x | X) = V (X ∪ {x} | Di)− V (X | Di). (4.10)

When b is large, this procedure is still expensive to compute due to the expectation term in

(4.5), requiring O(2b) operations to compute exactly. Here we approximate the expectation

using Monte Carlo sampling with a small set of samples of the labels. Specifically, given a

batch of points X, we approximate (4.5) with samples S = {Ỹ : Ỹ ∼ Y | X,Di}:

V (X | Di) ≈
∑

x∈X
Pr(y = 1 | x,Di) +

1

|S|
∑

Y ∈S

[∑′
T−b−|Di| Pr (y′ = 1 | x′,Di, X, Y )

]
. (4.11)

We will call the batch policy described above batch-ens. Note batch-ens using one sample

of the labels in a batch is similar to sequential simulation of ens with the sampling oracle,

though the two policies are motivated in different ways.

59



0 500 1 000 1 500 2 000 2 500

0

0.5

1
upper bound of scores
lower bound of max score
actual scores

(a)

0 500 1 000 1 500 2 000

0

20

40 upper bound of scores
lower bound of max score
actual scores

(b)

Figure 4.1: Illustration of pruning. The x-axis is the index of candidate points in descending
order of the upper bounds, and the y-axis is the actual marginal gain of batch-ens score
as in Eq. (6) in the main text. These plots are generated from running batch-ens on the
CiteSeerx data with budget T = 500 and batch size b = 5. There are 39 788 points, we only
plot the first and last 1 000 points to have a better presentation. (a) At the time of choosing
the first point (k = 1) of the 99th batch (i.e., i = 98) when T − b− |Di| = 5; here 99.61%
of points are pruned. (b) At the time of choosing the first point (k = 1) of the 16th (i.e.,
i = 15) batch when T − b− |Di| = 420; 98.23% of the points are pruned.

4.3.3 Lazy Evaluation for Pruning

We previously developed a pruning technique for ens in Chapter 3. The basic idea is: we

first compute an upper bound p∗(D) on marginal probabilities after observing D and one

additional positive observation. We use this to compute an upper bound of the ens score for

each candidate point. We also compute the actual ens score for the point with maximum

probability, which serves as a global lower bound of the maximum score. Now any candidate

point with upper bound less than the lower bound cannot possibly maximize the score and

can be removed from consideration.

Here we further improve the pruning for ens and generalize it to batch-ens. First, instead

of just computing a maximum probability bound p∗(D), we can compute upper bounds of

the highest r ≡ T − b − |Di| probabilities p∗1(D), p∗2(D), . . . , p∗r(D) after observing D and

60



one additional positive. This generalization is trivial for a k-nn model. We can now upper

bound the
∑′

T−b−|Di| term more tightly by
∑r

j=1 p
∗
j(Di) than by (T − b− |Di|)p∗(Di). This

upper-bounding technique for ens can be straightforwardly generalized to batch-ens, where

we only need to apply this upper bound for each sample and average them.

Besides improving the upper bound, we can also improve the lower bound. As we continue

to compute scores for more points, we can update the lower bound when observing a larger

score. Tightening the bound enables more-aggressive pruning. To better use this improving

lower bound, we first sort the candidates points in decreasing order of their upper bounds,

and compute actual ens scores in this order. This way, we never unnecessarily compute

scores for points that might be pruned later. This is similar to the idea of lazy evaluation

[19] for efficiently maximizing the gp-ucb [88] score.

Figure 4.1a illustrates the pruning in a representative iterations of batch-ens on CiteSeerx

data with budget T = 500 and batch size b = 5. We see when the remaining budget is small

(T − b− |Di| = 5), the upper bound is extremely tight, and in this example 99.61% of the

points are pruned.

We give another illustration of pruning when the remaining budget (T − b− |Di|) is large in

Figure 4.1b. We can see in this case the upper bound is much looser, but we are still able to

prune 98.23% of the points.

61



4.4 Related Work

Active search (as) and its variants have been the subject of a great deal of recent work

[25, 27, 46, 63, 64, 92, 95, 98, 99, 100]; nevertheless, to the best of our knowledge, this is the

first study on batch active search under this particular setting.

[98, 99] considered a different goal of batch active search: to find all or a given number of

actives as soon as possible. Our goal, in contrast, is to find as many actives as possible in a

given budget, which encourages more nonmyopic planning. Their proposed batch policy is to

pick the most-likely positive points (those farthest from an svm hyperplane), which is quite

different from our more-principled approach using Bayesian decision theory. Their policy is

an analog of the one-step (greedy) myopic policy in our treatment, which performs poorly as

we will show in Section 6.7.

Batch policies have been studied extensively in active learning [10, 14, 16, 42]. In particular,

[14] proposed an adaptive submodular objective function, and chose points greedily by

maximizing the marginal gain. This algorithm is similar in spirit to our batch-ens policy,

though it is not known whether the batch-ens function is submodular. They also proved a

result similar in spirit to our Theorem 2 (also called “adaptivity gap” in [2]) to show that

the price of parallelism is bounded irrespective of batch sizes. This theorem holds under the

stochastic submodular maximization setting where the outcomes of variables are independent,

which certainly does not apply in our case.

As mentioned before, as can be considered as Bayesian optimization (bo) with binary

observations and cumulative reward maximization on a finite domain. Numerous batch bo

policies have been studied [30, 31, 33, 102] [30, 31] proposed q-ei, in which q points are

selected simultaneously to maximize the expected improvement. They also used sequential

62



simulation to optimize the q-ei objective, and proposed two heuristic “fictional oracles” called

the Kriging believer (kb) and constant liar (cl). kb sets the label of a chosen point to its

posterior mean, and cl sets the label to be a chosen constant, such as the maximum, mean,

or minimum of the observed values so far. This is similar to our pessimistic or optimistic

oracles.

In the Gaussian process (gp) bandit optimization setting, [19] proposed gp-bucb, a batch

extension of the gp-ucb policy [88]. They also construct the batch by sequentially simulating

the gp-ucb policy, where the values of the selected points are “hallucinated” with the posterior

mean, equivalent to the Kriging believer heuristic for q-ei. A similar strategy was adopted

also in [100] to identify the compounds with the top-k continuous-valued binding activities

against an identified biological target. These approaches don’t directly apply to our setting,

where the target values are binary. In fact, in Chapter 3 we showed that a ucb-style policy

adapted to the Bernoulli setting performs worse than a myopic two-step policy on a range of

problems in their supplementary material.

4.5 Experiments

In this section, we comprehensively compare all our 14 proposed policies: (1) greedy-batch,

coded as “greedy”; (2–13) sequential simulation, coded as “ss-p-o”, where p (for policy)

could be “one” (for one-step), “two” (for two-step), or “ens”, and o (for oracle) could be “s”

(sampling), “m” (most-likely), “0” (pessimistic, i.e., always-0), or “1” (optimistic, i.e., always-1);

(14) batch-ens. Suggested by one of the the anonymous reviewers, we also compare these

policies against another naïve baseline, which we call uncertain-greedy batch (ugb), where

we build batches that simultaneously encourage exploration and exploitation by combining

63



the most uncertain points and the highest probability points. We use a hyperparamter

r ∈ (0, 1) to control the proportion, choosing the most uncertain points for 100r% of the

batch, and greedy points for the remaining 100(1− r)% of the batch. We run this policy for

r ∈ {0.1, 0.2, . . . , 0.9}, and show the best result among them. As in Chapter 3, we consider

data from three application domains: a citation network, material science, and drug discovery.

We use k nearest neighbor (k-nn) with k = 100 as our probability model for the drug discovery

datasets, and k = 50 for the other two datasets, same as in the sequential setting.

4.5.1 Finding neurips Papers From CiteSeerx

We use experimental settings matching Chapter 3. Specifically, we randomly select a single

target (i.e., a neurips paper) to form the initial observations D0, and repeat the experiment

100 times for each batch size and each policy. We set the budget T to 500. We show the

average number of neurips papers found at termination for batch sizes b ∈ {5, 10, 15, 20, 25}

in Table 4.1. If b does not divide T (e.g., b = 15), we take t = dT/be, and only count the

first T points. We also add the results for batch size 1 for reference. For batch-ens, we use

16 samples; therefore for batch size 5 the expected future utility is computed exactly. We

highlight the best result for each batch size in boldface. We conduct a paired t-test 7 for each

other policy against the best one, and also emphasize those that are not significantly worse

than the best with significance level α = 0.05 in blue italics. We use this convention in all

tables.

We summarize the patterns as follows: (1) for this dataset the uncertain-greedy batch (ugb)

is actually a strong baseline; it performed mostly better than the myopic policies. But keep

in mind we are reporting the best result for ugb varying the hyperparameter; in practice, it
7Wilcoxon signed rank tests give similar results.

64



Table 4.1: Results for CiteSeerx data: Average number of targets found by various batch
policies: greedy-batch, sequential simulation “ss-p-o” and batch-ens, with batch sizes 5, 10,
15, 20, 25. The average is taken over 100 experiments. Highlighted are the best in each
column and those not significantly worse than the best using a one-sided paired t test with
significance level α = 0.05.

1 5 10 15 20 25
ugb - 159.2 153.5 155.5 149.3 147.9
greedy 154.9 154.2 149.1 149.2 148.4 151.1
ss-one-1 - 152.1 141.7 126.2 121.4 117.9
ss-one-m - 152.4 141.7 132.0 127.8 127.4
ss-one-s - 149.2 147.7 146.7 142.5 132.8
ss-one-0 - 154.1 148.5 149.2 148.5 151.1
ss-two-1 165.9 154.6 143.3 134.2 122.8 122.2
ss-two-m - 156.1 142.2 139.8 128.7 126.1
ss-two-s - 157.1 153.5 145.8 141.1 142.0
ss-two-0 - 156.6 154.7 152.4 151.6 154.1
ss-ens-1 187.2 154.7 142.6 135.0 131.9 122.1
ss-ens-m - 154.2 143.0 138.1 135.7 126.6
ss-ens-s - 165.5 155.8 147.5 142.8 139.3
ss-ens-0 - 169.1 165.6 155.1 152.9 149.8
batch-ens - 170.0 163.1 157.0 154.2 154.5

is hard to know which hyperparameter is the best. However, it is still far worse than ss-ens-0

and batch-ens. (2) As a general trend, the performance decreases as batch size increases. (3)

ss-ens-0 and batch-ens (both nonmyopic) are either the best or not significantly worse than

the best for all batch sizes except 25. (4) Sequential simulation is almost always better with

the pessimistic oracle, except with two-step for b = 5.

4.5.2 Finding Bulk Metallic Glasses

We conduct the same experiments as for CiteSeerx data. This dataset is much larger, so we

only repeat the experiment 30 times, randomizing the initial seed. We also set T = 500. The

results are reported in Table 4.3.
65



Table 4.2: Diversity scores of the chosen batches by all our proposed policies, measured by the
average rank of distances from each other in a batch, produced from the results on CiteSeerx
data. Higher value indicates more diversity.

5 10 15 20 25
greedy 1515 1970 2336 2443 2535
ss-one-1 303 437 599 677 761
ss-one-m 866 810 1000 976 1111
ss-one-s 1221 1134 1458 1374 1692
ss-one-0 1524 1983 2339 2450 2532
ss-two-1 413 507 603 735 772
ss-two-m 927 982 987 1221 1322
ss-two-s 1344 1331 1467 1538 1483
ss-two-0 1768 1933 2221 2540 2576
ss-ens-1 968 1254 1328 1299 1400
ss-ens-m 1323 1458 1751 1683 1887
ss-ens-s 2131 2258 2370 2402 2602
ss-ens-0 1987 2281 2542 2587 2725
batch-ens 2266 2585 2842 3126 3225

We have the following observations: (1) The uncertain-greedy batch policy is again mostly

worse than all our proposed batch active search policies. (2) The performance often decreases

as batch size increases. But we see more exceptions than in the results for CiteSeerx data,

probably due to fewer trials. (3) The nonmyopic policies (i.e., ens based policies) consistently

perform best for all batch sizes, and all myopic policies are significantly worse than the best

policy. (4) Sequential simulation with the pessimistic oracle are mostly the best for one-step

and two-step policies; however, we do not see the same pattern for ens. At this moment we

are not sure whether this is only because of lack of repetition or if this particular dataset has

different properties.

66



Table 4.3: Results for bmg data: average number of targets found by various batch policies:
baseline greedy-batch, sequential simulation “ss-p-o” and batch-ens, with batch sizes 5, 10,
15, 20, 25. The average is taken over 30 experiments. Highlighted are the best in each column
and those that are not significantly worse than the best using a one-sided paired t test with
significance level α = 0.05.

1 5 10 15 20 25
ugb - 269.6 265.8 265.9 255.7 247.9
greedy 283.7 278.1 272.5 269.6 264.2 263.6
ss-one-1 - 262.8 244.2 235.4 227.6 224.1
ss-one-m - 269.0 252.2 236.7 231.3 225.6
ss-one-s - 283.0 272.7 263.1 255.6 246.1
ss-one-0 - 278.1 272.5 269.8 264.3 263.6
ss-two-1 282.0 270.7 242.7 241.4 231.4 225.6
ss-two-m - 272.5 250.9 243.6 242.5 226.4
ss-two-s - 274.4 267.8 262.3 250.9 251.6
ss-two-0 - 277.1 275.8 274.1 264.7 266.1
ss-ens-1 304.9 301.7 298.4 290.2 277.5 280.2
ss-ens-m - 304.3 294.5 290.3 284.7 283.1
ss-ens-s - 290.3 283.5 288.0 299.2 289.2
ss-ens-0 - 301.4 281.7 283.8 279.5 275.7
batch-ens - 300.6 296.2 306.7 287.6 294.8

4.5.3 Drug discovery

We conduct our main investigation on a drug discovery application. Recall in this application,

our goal is to find chemical compounds that exhibit binding activity with a target protein.

Each target protein defines an active search problem. We only consider the first ten of the 120

datasets and only the ecfp4 fingerprint, which showed the best performance in the sequential

setting (see Chapter 3). These datasets share a pool of 100 000 negative compounds randomly

selected from the zinc database [89]. The number of positives of the ten datasets varies from

221 to 1024, with mean 553.

67



Table 4.4: Results for drug discovery data: Average number of positive compounds found
by the baseline uncertain-greedy batch, greedy-batch, sequential simulation and batch-ens
policies. Each column corresponds to a batch size, and each row a policy. Each entry is
an average over 200 experiments (10 datasets by 20 experiments). The budget T is 500.
Highlighted are the best (bold) for each batch size and those that are not significantly worse
(blue italic) than the best under one-sided paired t-tests with significance level α = 0.05.

1 5 10 15 20 25 50 75 100
ugb - 257.6 257.9 258.3 250.1 246.0 218.8 206.2 172.1
greedy 269.8 268.1 264.1 261.6 258.2 257.0 240.1 227.2 208.2
ss-one-1 269.8 260.7 254.6 245.2 233.6 223.4 200.8 182.9 178.9
ss-one-m 269.8 264.5 257.7 250.0 244.4 236.5 211.7 195.4 179.4
ss-one-s 269.8 266.8 261.3 256.7 248.7 244.1 214.9 202.4 181.3
ss-one-0 269.8 268.1 264.1 261.6 258.2 257.0 240.1 227.2 208.2
ss-two-1 281.1 237.1 219.8 210.8 212.1 196.2 172.1 158.8 152.9
ss-two-m 281.1 252.6 246.4 237.2 232.9 225.1 200.2 181.6 167.2
ss-two-s 281.1 248.9 242.5 235.3 226.6 219.2 196.7 175.3 158.3
ss-two-0 281.1 252.5 247.6 247.9 244.4 240.4 225.6 213.8 199.1
ss-ens-1 295.1 269.4 247.9 227.2 223.1 210.3 185.3 152.6 148.7
ss-ens-m 295.1 293.8 290.2 285.3 281.6 274.4 249.4 217.2 203.1
ss-ens-s 295.1 289.9 278.3 269.8 262.6 255.0 220.8 185.5 161.2
ss-ens-0 295.1 293.6 289.1 288.1 287.5 280.7 269.2 257.2 241.0
batch-ens-16 295.1 300.8 296.2 293.9 292.1 288.0 275.8 272.3 252.9
batch-ens-32 295.1 300.8 295.5 297.9 290.6 288.8 281.4 275.5 263.5

For each dataset, we start with one random initial positive seed observation and repeat the

experiment 20 times. We test for batch sizes b ∈ {5, 10, 15, 20, 25, 50, 75, 100}, we also show

the results for sequential search (b = 1) as a reference. The budget is set as T = 500. We

test batch-ens with 16 and 32 samples, coded as batch-ens-16 and batch-ens-32. We show

the number of positive compounds found in Table 4.4, averaged over the 10 datasets and 20

experiments each, so each entry in the table is an average over 200 experiments. We highlight

the best result for each batch size in boldface.

We highlight the following observations, similar to that of previous datasets. (1) The

performance decreases as the batch size increases. (2) Nonmyopic policies are consistently

better than myopics ones; in particular, batch-ens is a clear winner. (3) For sequential

simulation policies, the pessimistic oracle is almost always the best.

68



1 2 3 4 5 6

250

260

270

280

5.3%
1.9%

1.6%

2.0% 0.4%

4e-05
0.04

0.09

0.009 0.3

log2 (number of samples)

av
er

ag
e

nu
m

be
r

of
ta

rg
et

s
fo

un
d

Figure 4.2: Number of targets found versus number of samples used for batch-ens. This is
averaged over the results for batch size 50 on 10 drug discovery datasets and 20 experiments
each. The text labels show the percentage of improvement and p-value of one-sided t tests
comparing against previous numbers, e.g., 8 samples improves over 4 samples by 1.9%, and
the p-value is 0.04.

For batch-ens, we find batch-ens with 32 samples often performs better than with 16, espe-

cially for larger batch sizes. We have run batch-ens for b = 50 with N ∈ {2, 4, 8, 16, 32, 64},

and find that the performance improves considerably as the number of samples increases,

but the magnitude of this improvement tends to decrease with larger numbers, as shown in

Figure 4.2. We believe 32 label samples offers a good tradeoff between efficiency and accuracy

for b = 50. An interesting future work is theoretical analysis providing guidance for choosing

N .

4.5.4 Discussion

We now discuss our observations in more detail. First we see all our proposed policies perform

better than the heuristic uncertain-greedy batch, even if we optimistically assume the best

hyperparameter of this policy (not to mention we hardly know what the best hyperparameter

69



5 25 50 75 100

1

1.2

1.4

batch size

av
er

ag
e

pe
rf

or
m

an
ce

ra
ti

o

(a)

5 10 15 20 25

1.1

1.2

1.3

batch size

av
er

ag
e

pe
rf

or
m

an
ce

ra
ti

o

T=100
T=300
T=500

(b)

Figure 4.3: (a) Average performance ratio between sequential policies and batch policies, as a
function of batch size, produced using averaged results in Table 4.4. (b) Same plots produced
using averaged results (excluding uncertain-greedy) for the CiteSeer dataset (Table 4.1).

should be in practice). Our framework based on Bayesian decision theory offers a more

principled approach to batch active search (especially batch-ens); and our methods are

effectively hyperparameter-free (except the number of samples used in batch-ens). In the

following, we elaborate on the three observations.

Empirical adaptivity gap. Regardless of what policy is used, the performance in general

degrades as the batch size increases. But how fast? We average the results in Table 4.4

over all policies for each batch size b as an empirical surrogate for optb in Theorem 2, and

plot the resulting surrogate value of opt1

optb
as a function of b in Figure 4.3a. Although these

policies are not optimal, the empirical performance gap matches our theoretical linear bound

surprisingly well. To verify the empirical linear trend also holds for different budgets and on

other datasets, we plot the same curves for the CiteSeerx dataset for budget T = 100, 300, 500

in Figure 4.3b. We can see these lines all appear to be linear; more interestingly, given the

same batch size, the gap is smaller for larger T , which is also indicated by Theorem 2. As

70



future work, we will further investiage whether this gap will decrease as 1/ log T . These

results could provide valuable guidance on choosing batch sizes.

Despite the overall trends in our results, we see some interesting exceptions. That is, batch-

ens with batch size 5 is significantly better than that with batch size 1, with a p-value of

0.02 under a one-sided paired t-test. This is counterintuitive based on our analysis regarding

the adaptivity gap. We conjecture that batch-ens with larger batch sizes forces more (but

not too much) exploration, potentially improving somewhat on sequential ens in practice.

Why is the pessimistic oracle better? Among the four fictional oracles, the pessimistic

one usually performs the best for sequential simulation. When combined with a greedy policy,

we have provided some mathematical rationale in Proposition 1: sequential simulation then

near-optimally maximizes the probability of unit improvement, which is a reasonable criterion.

Intuitively, by always assuming the previously added points to be negative, the probabilities

of nearby points are lowered, offering a repulsive force compelling later points to be located

elsewhere, leading to a more diverse batch. This mechanism could help better explore the

search space.

To verify our hypothesis that the pessimistic oracle performances better is due to encouraging

diversity, we show in Table 4.2 the diversity scores of the chosen batches using the results on

CiteSeerx data. The diversity is measured as follows: for each batch B, for any xi, xj ∈ B, we

compute the rank of xj according to increasing distance to xi, and average the ranks for all

pairs as the diversity score of this batch. We use rank instead of distance for invariance to

scale.

71



Table 4.5: Diversity scores of the chosen batches by all sequential simulation policies, measured
by the average rank of distances from each other in a batch. The results are for b = 20 on
CiteSeerx data. Higher values indicate more diversity. For reference, the score for greedy and
batch-ens are 2443 and 3126, respectively.

optimisitic most likely sample pessimistic
one-step 677 976 1374 2450
two-step 735 1221 1538 2540
ens 1299 1683 2402 2587

To better contrast, we extract the diversity scores for batch size 20, and present in Table

4.5. There is an increasing trend in each row, with “pessmistic” (always negative) the highest;

also in each column, with ens the highest.

If comparing Table 4.2 and Table 4.1 closely, one could find that the diversity scores and active

search performances align remarkably well. This indicates diversity could be an important

consideration for batch policy design.

Note this coincides with the idea of explicitly using repulsion to create a diverse batch, which

has been adopted in similar settings such as Bayesian optimization [33].

Myopic vs. nonmyopic behavior. Nonmyopic policies (ens-based) almost always perform

better than myopic policies. This certainly matches our expectation as nonmyopic policies are

always cognizant of the budget and hence can better trade off exploration and exploitation.

To gain some insight into the nature of this myopic/nonmyopic behavior, in Figure 4.4 we

plot the probabilities of the points chosen (at the iteration of being chosen) by the greedy

and batch-ens-32 policies for batch size 50 across the drug discovery datasets. The behavior

of other myopic policies such as sequential simulation of one- or two-step) is similar to

greedy-batch, whereas that of the other ens based policies is similar to batch-ens-32.

72



0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

iterations

pr
og

re
ss

iv
e

pr
ob

ab
ili

ty

greedy
batch-ens

Figure 4.4: Progressive probabilities of the chosen points of greedy and batch-ens-32, averaged
over results for batch size 50 on all 10 drug discovery datasets and 20 experiments each.

First, in each batch, the trend for greedy is not surprising, since every batch represents the

top-50 points ordered by probabilities. For batch-ens, there is no such trend except in the

last batch, where batch-ens naturally degenerates to greedy behavior. Second, along the

whole search process, greedy has a decreasing trend, likely due to over-exploitation in early

stages. On the other hand, batch-ens has an increasing trend. This could be partly due to

more and more positives being found. More importantly, we believe this trend is in part a

reflection of the nonmyopia of batch-ens: in early stages, it tends to explore the search space,

so low probability points might be chosen. As the remaining budget diminishes, it becomes

more exploitive; in particular, the last batch is purely exploitive.

4.5.5 Pruning Effectiveness

We present the results of pruning for all three types of datasets in Table 4.6. On all three

types of datasets, the majority of points in each iteration are pruned. Especially on drug

73



discovery datasets, on average over 98% of the points are pruned; that is over 50 times

speed-up.

Table 4.6: Results for pruning effectiveness. The numbers are averaged over all iterations
of batch-ens for all batch sizes tested. For drug discovery data, the result is averaged over
batch-ens-16 and batch-ens-32.

datasets #total #pruned pruning rate
CiteSeerx 39546 27422.1 68.37%
bmg 111360 82343.6 73.94%
Drug discovery 100316 98612.6 98.30%

4.6 Conclusion

We have completed the first study on batch active search, where the goal is to find as many

positives as possible in a given labeling budget. We derived the Bayesian optimal policy for

batch active search, and proved a lower bound, linear in batch size, on the performance gap

between optimal sequential and batch policies. This was shown to match empirical results.

We then generalized a recently proposed efficient nonmyopic search (ens) policy to the batch

setting and proposed two approaches to approximately solving the batch version of ens:

sequential simulation with fictional labeling oracles and greedy set function maximization.

We conducted comprehensive experments on data from three application domains evaluating

all fourteen proposed policies. Results show that nonmyopic policies perform significantly

better than myopic ones. By analyzing the results, we gained a deeper understanding of the

nonmyopic behavior and find diversity to be an importantant consideration for batch policy

design.

74



Chapter 5

Cost Effective Active Search

In Chapter 3 and 4, we focused on the budgeted active search, where the goal is to find as

many positive points as possible in a given budget B, the total number of points one can

query, known a priori. In this paper, we consider the “dual” problem: how to find a given

number of positives with minimum cost. Formally, given a large pool of n points X = {xi}ni=1

with corresponding unknown labels yi ∈ {0, 1} indicating whether xi is positive or not, we

want to sequentially choose a set D ⊂ X of points to evaluate to identify a given target

number T of positives in as few iterations as possible8. In this chapter we use T to denote

the “target” number of positives. We call this problem cost effective active search (ceas). To

contrast with the budgeted setting, we present both formulations:

Budgeted: arg maxD⊂X ,
∑

xi∈D yi, s.t. |D| = B; ceas: arg minD⊆X |D|, s.t.
∑

xi∈Dyi ≥ T.

One might wonder if we could reduce ceas to the budgeted case, for which many effective

policies are readily available. For example, given a ceas problem with target T , we could
8Here we abuse the notation D to actually mean the input locations in D when we write D ⊆ X

75



instead solve a budgeted problem with an estimated budget B. However, this “dual” trans-

formation is not one-to-one: given a budget B, the expected utility is no longer T . In fact,

both Pr(utility | B) and Pr(cost | T ) are highly complicated distributions and estimating

their expectations is extremely intractable, as we will show later. Therefore it is necessary to

develop specific policies for ceas.

ceas is a direct model of practical cases where we must achieve a certain target with minimum

cost; for example, during initial screening for drug discovery, we may seek a certain number

of active compounds to serve as lead compounds to be refined later in the discovery process.

There have been several previous investigations into the the ceas setting (e.g., [98, 99]), but

the proposed policies are often based on heuristics, and to the best of our knowledge, few

theoretical results have been established regarding the hardness of this problem.

In this Chapter, we study the ceas problem under the Bayesian decision-theoretic framework.

We first derive the Bayesian optimal policy and establish a strong hardness result showing

that the optimal policy is extremely inapproximable. In particular, we show any efficient

algorithm is at least Ω(n0.16) times worse than the optimal policy in terms of the expected

cost needed.

We then propose nonmyopic approximations to the Bayesian optimal policy and develop

efficient implementation and pruning techniques that make nonmyopic search in large spaces

possible. To that end, we discuss an understudied distribution called the “negative Poisson

binomial” and propose a simple and fast approximation to its expectation, an essential

component of our efficient nonmyopic policy. We conduct comprehensive experiments on

benchmark datasets in various domains such as drug and materials discovery and demonstrate

that our policy is superior to widely used baselines.

76



5.1 Related Work

[14] studied minimum-cost active learning under the version space reduction utility and proved

that a greedy algorithm is near-optimal due to adaptive submodularity. [99] studied “active

learning in the drug discovery process.” They used perceptron and svm as predictive models

and tried several variants of uncertainty sampling (sampling points closest to the separating

hyperplane) and greedy sampling (choosing points furthest from the hyperplane). The authors

found that greedy sampling performed better, but offered no theoretical justification, in

contrast to our decision theoretic approach.

ceas is a special case of the adaptive stochastic minimum cost cover problem [32], for which

an inapproximability bound was proved using a spiritually similar instance construction to

our own, including the idea of “treasure hunting” and using xor for encoding. However, their

worst case construction is much more complicated and does not directly correspond to active

search. Furthermore, their bound only holds conditionally (PH 6= ΣP
2 ). Our proof is much

simpler and does not rely on any complexity theoretic hypothesis.

ceas is also closely related to the total recall problem in information retrieval [37, 75, 104] or

the so-called technology-assisted review progress for evidence discovery in legal settings [36],

where the goal is to retrieve (nearly) all relevant documents at a reasonable labeling cost.

Despite the similarity to our setting, retrieving all positives could be drastically different

(and arguably much harder). One immediate difference is that we often do not know the

total number of positives in a dataset a priori, thus a considerable amount of research is

devoted to deciding when to stop in the total recall procedure [37]. Our definition of ceas

avoids this complication.

77



5.2 Bayesian Optimal Policy

We again assume there is a model that provides the posterior probability of a point x being

positive, conditioned on previously observed data D, i.e., Pr(y = 1 | x,D). The Bayesian

optimal policy then chooses the point that minimizes the expected number of further iterations

required. Formally, in iteration (i+ 1), where we have observed Di, then

x∗ = arg minx E[cr | x,Di], (5.1)

where cr denotes the further cost incurred (i.e., the size of the chosen set) when r more

positives are identified after Di, and r = T −∑(x,y)∈Di y is the remaining target yet to be

achieved.

The expected cost can be written as a Bellman equation:

E[cr | x,Di] = 1 + Pr(y = 1 | x,Di) ·minx′ E[cr−1 | x′, x, y = 1,Di] +

Pr(y = 0 | x,Di) ·minx′ E[cr | x′, x, y = 0,Di]. (5.2)

However, this recursion is not mathematically well defined since there is no exit. To see this,

consider the base case where r = 1, i.e., only one more positive left to find. With probability

Pr(y = 1 | x,Di), x is positive, and we finish with cost 1; with probability 1−Pr(y = 1 | x,Di),

x is negative, and then we need to update the probability conditioned on y = 0 and repeat

this process. That is,

E[c1 | x,Di] = Pr(y = 1 | x,Di) · 1+(1− Pr(y = 1 | x,Di)) ·minE[c1 | x,Di]. (5.3)

78



So even for r = 1, the recursion never exits. Note this is very different from the budgeted

setting [27], where the base case with budget 1 is well defined and trivial to compute.

In practice, the recursion must stop after exhausting the whole pool. We assume the search

stops after at most t steps; we stress that this is only for derivation purposes, and should not

be confused with the budgeted setting with budget t. If we set t = |X |, then that means we

keep searching until the target is achieved or there are no more points left to evaluate. Let crt

be the cost incurred after r positives are found or t evaluations are completed. Now we can

derive the base case of the recursion. To simplify notations, we will omit the conditioning

on Di in the following and assume all probabilities are implicitly conditioned on current

observations. Let p(x) = Pr(y = 1 | x,Di). We start with the simplest case r = 1:

When t = 1, the expected cost would be 1 no matter what.

When t = 2, E[c1
2 | x] = p(x) · 1 + (1− p(x)) · 2 = 2− p(x). In this case, the greedy policy

choosing the point with highest probability is optimal.

When t = 3,

E[c1
3 | x] = p(x) · 1 + (1− p(x)) ·minx′ E[c1

2 | x′, x, y = 0]

= 2− p(x)− (1− p(x))maxx′ p
′(x′). (5.4)

where p′(x′) = Pr(y′ = 1 | x′, x, y = 0). We can see

arg minx E[c1
3 | x]⇔ arg maxx p(x) + (1− p(x)) maxx′ p

′(x′). (5.5)

Note the form on the right hand side of (5.5) has a clear exploration vs. exploitation

explanation. It balances between choosing a point with high probability as governed by

79



p(x) (exploit) and a point that has low probability but would lead to a high probability

point if it turns out to be negative as governed by (1 − p(x)) maxx′ p
′(x′) (explore). This

is counter-intuitive since one would imagine with only one positive left to find, the best

thing to do should be greedy, but we have shown if we are granted three or more iterations,

greedy might not be optimal in terms of minimizing expected cost. Therefore, we argue that

nonmyopic planing is crucial for ceas.

We draw a connection between (5.5) and the two-step score in budgeted setting:

arg maxx p(x) + p(x) maxx′ p(y
′ = 1 | x′, y = 1)+(1− p(x)) maxx′ p(y

′ = 1 | x′, y = 0); (5.6)

we can see in (5.6), the future utility is averaged over the positive and negative case, whereas

in (5.5) only the negative case is considered.

The recursion is now well-defined for r = 1:

E[c1
t | x] = p(x) · 1+(1− p(x)) ·minx′ E[c1

t−1 | x′, x, y = 0]. (5.7)

Note it takes O(nt) time to compute even for the simplest case r = 1 . In general (r ≥ 1), we

have

E[crt | x] = 1 + p(x) ·minx′ E[cr−1
t−1 | x′, x, y = 1] +

(1− p(x)) ·minx′ E[crt−1 | x′, x, y = 0]. (5.8)

80



5.3 Hardness of Cost Effective Active Search

The above derivation indicates that we can not efficiently compute the expected cost exactly.

In fact, the optimal policy is not only hard to compute, it is even hard to approximate. As

we show in the following theorem, any efficient algorithm is at least Ω(n0.16) times worse than

the optimal policy in terms of average cost:

Theorem 3. Any algorithm A with computational complexity o
(
nn

ε) has an approximation

ratio Ω(nε), for ε = 0.16; that is,

E[costA]

opt
= Ω (nε) , (5.9)

where E[costA] is the expected cost of A, and opt is that of the optimal policy.

Note that this lower bound is very tight since O(n) is a trivial upper bound. We prove the

theorem by constructing a class of active search instances similar to that of the hardness

proof for the budgeted setting. Specifically, there is a small secret set of points, the labels of

which encode the location of a clump of positive points. The optimal policy (with unlimited

computational power) could easily identify this secret set by enumerating all possible subsets of

the same size and feeding them into the inference model, thereby revealing the positive clump

and completing the search quickly. However, for an algorithm with limited computational

power, the probability of revealing this secret set is extremely low, and hence it can not do

any better than randomly guessing, which results in a much higher expected cost.

This proof has two key differences compared to that of the budgeted setting. First, it results

in an exponentially stronger bound (n0.16 vs
√

log n). Second, the improved bound requires

a different methodology on how to hide the set of profitable points from the algorithm. In

81



particular, a new counting technique is used for bounding the probability of identifying the

“secret set”. In the budgeted setting, one key argument considered “If an efficient policy selects

a subset of B points, how likely is it to identify the secret set?”, which was straightforward

to compute since the chosen budget B defined the cardinality of the selected subset. Such

reasoning does not apply to ceas setting. In fact, we leverage the underlying algorithmic

challenge of optimizing the newly considered objective where the algorithm has to continue

searching until it reaches the target. A formal proof is given in the Appendix C.

5.4 Efficient Nonmyopic Approximation

The fundamental difficulty in computing the expected cost is that we need to recursively update

the probabilities of the remaining points conditioned on possible outcomes of the previous

points. A natural way to relieve this burden is to assume conditional independence (ci) at

some point in the recursion, e.g., after observing the label of the point under consideration.

This idea has been applied successfully in the budgeted setting, where it showed excellent

empirical performance in practice. We propose to adapt this idea to ceas. However, compared

to the budgeted setting, it is less straightforward to approximate the expected remaining

cost for ceas – even assuming conditional independence – as the stopping time is a random

variable.

We model the remaining cost as a negative Poisson binomial (npb) distribution, i.e., the

number of coins (with nonuniform biases) that need to be flipped (independently) to get a

given number of heads. This is in contrast to the utility being modeled as a Poisson binomial

(pb) distribution in the budgeted setting. The npb distribution is a natural generalization of

the negative binomial (nb) distribution where all coins have the same biases. While both nb

82



and pb distributions are well studied, few references can be found for npb. Some informal

discussions about npb can be found in the Physics Forum.9 [11] defines a distribution they

also call npb, but it is actually a sum of geometric variables. [59] defines npb as the number

of “failures given successes” for predicting the outcome of darts tournaments. In the following,

we formally define the npb distribution and propose novel and fast approximations to its

expectation, based on which we derive our efficient nonmyopic policy for ceas.

5.4.1 Negative Poisson Binomial Distribution

We define the npb distribution in an intuitive manner as follows:

Definition 1 (Negative Poisson binomial distribution). Let there be an infinite number of

ordered coins with heads probabilities p1 ≥ p2 ≥ p3 ≥ · · · ; given a number r of heads

required, we toss the coins one by one in this order until r heads occur. The number of coins

tossed m follows a negative Poisson binomial distribution: m v npb(r, [p1, p2, p3, · · · ]).

Note that this distribution has support for any integer m ≥ r assuming the probabilities are

nonzero. Here we study a truncated version where we have a finite number of coins, n, and

we assume n is large enough so that Pr(m ≥ n) is negligible. This is typically the case in

active search since r � n, where n the size of unlabeled pool and r is the target to achieve.

The pmf of this distribution can be derived using the pmf of a Poisson binomial (pb) distri-

bution r v pb([p1, p2, · · · , pn]), which is the number of heads observed if we independently

toss n coins with heads probabilities p1, p2, . . . , pn. Denote Prpb(i, j) as the probability

of j heads when there are i coins with probabilities p1, p2, . . . , pi. Then Prpb(n, r) can be
9https://www.physicsforums.com/threads/negative-poisson-binomial-distribution.759630/

83



computed via dynamic programming (dp):

Prpb(n, r) =





∏n
i=1(1− pi), if r = 0;

pnPrpb(n− 1, r − 1) + (1− pn)Prpb(n− 1, r), if 0 < r <= n;

(5.10)

The dp table of Prpb(n, r) is of size O(nr). [12] also derived other formulas for computing

the pmf of the pb distribution.

Given the pmf of the pb distribution, the pmf of m v npb(r, [p1, · · · , pn]) is, ∀ m ≥ r:

Prnpb(m, r) = pmPrpb(m− 1, r − 1), (5.11)

and the expectation is

E[m] =
∑n

i=r Prnpb(i, r) · i. (5.12)

Note in computing Prnpb(n, r), all Prnpb(m, r) form < n are also computed. So the complexity

for computing the expectation is also O(nr).

Figure 5.1 shows some examples of negative Poisson binomial distributions using the posterior

marginal probabilities shown in 5.1a. We sort the probabilities in decreasing order since this

is obviously the order that leads to minimum E[m], which is what we care in ceas.

5.4.2 Approximation of the NPB expectation

The complexity O(nr) for computing the expectation is prohibitively high. To reduce its

complexity, we observe in practice that Prnpb(m, r) will be very close to zero for m� r. So

84



0 500 1 000 1 500

0.5

0.6

0.7

0.8

0.9

points

p

(a)

50 60 70 80 90

0

0.02

0.04

0.06

0.08

0.1

m

p(
m

)

(b)

220 240 260 280 300 320

0

0.02

0.04

m

p(
m

)

(c)

Figure 5.1: Illustration of a probability vector [p1, p2, . . . , pn] and the corresponding probability
mass functions of npb distribution for different r. Left: the top 1500 posterior marginal
probabilities after conditioning on 100 positive and 100 negative points (randomly selected);
probabilities are computed using a k-nn model (with k = 50) on the CiteSeerx dataset; middle:
r = 50; right: r = 200.

we can stop at m̄ when
∑m̄

i=r Prnpb(i, r) ≥ 1− ε for, e.g., ε = 10−6. Hence, an almost exact

solution can be computed in O(m̄r). We call this approach ε-dp.

The complexity of this approximation O(m̄r) for computing the expectation in (5.12) may

still be high since we might need to compute this expectation for every candidate point

in each iteration. We propose another cheap but accurate approximate method with only

O(E[m]) complexity. The idea is simple: coin toss i contributes pi heads in expectation, so

we accumulate these contributions until r heads occur. That is,

E[m] ≈ arg mink
∑k

i=1 pi ≥ r. (5.13)

We call this approximation accu (short for “accumulate”). Note that accu always returns an

integer, while the true expectation might not be integral. To fix this, we subtract a correction

term. Let m̂ = arg mink
∑k

i=1 pi ≥ r. We check what portion of pm̂ was needed for the sum

85



to be exactly r, and remove the extra portion:

E[m] ≈ m̂−

(∑m̂
i=1 pi

)
− r

pm̂
. (5.14)

We call this approximation accu’. In the special case of the negative binomial distribution

(i.e., p = p1 = p2 = . . . = pn), accu’ recovers the true expectation r/p.

One might be tempted to approximate the expectation by a natural generalization of

the expectation of a negative binomial distribution r/p = 1/p + 1/p + · · · + 1/p; that is,

E[m] ≈ 1/p1 + 1/p2 + · · ·+ 1/pr. We call this recip. Note that this approximation is also

exact when p1 = p2 = · · · = pn = p. However, we will see that this approximation can be

very poor.

We run simulations to demonstrate the fidelity of these approximations. We parameterize the

npb distribution using the posterior marginal probabilities [p1, . . . , pn] computed in a typical

active search iteration using a k-nn model (see Figure 5.1a). We plot the approximation

errors against the exact expectation computed via (5.12) for r = 1, . . . , 500, shown in Figure

5.2.

We can see ε-dp has basically zero error everywhere. accu’ also has zero error almost

everywhere except two locations. As expected, accu constantly overestimates the exact value

by a small fraction, whereas recip considerably underestimates the true value especially

for large r. The root mean square error (rmse) and total time cost for computing the 500

expectations are shown in Table 5.1.

After a closer look at the locations where the errors are higher (e.g., around r = 220, for

which E[m] ≈ 300), we find that such locations exactly correspond to r values such that the

86



0 100 200 300 400 500

−2

0

r

ap
pr

ox
im

at
io

n
er

ro
r

ε-dp
accu
accu’
recip

Figure 5.2: Approximation errors of various approximation methods for computing the
expectation of npb distribution. y-axis is approximate E[m] minus exact E[m]. The error for
recip drops below -10 after about r = 250, hence not shown to zoom in the interesting part
of the figure.

Table 5.1: Time cost and quality of various approximations of the expectation of npb
distribution.

exact ε-dp accu’ accu recip

rmse — 0.0004 0.0438 0.5723 7.8276
time(s) 97.4841 0.1851 0.0029 0.0029 0.0002

probability around E[m] drops abruptly (refer to Figure 5.1a). This makes perfect sense

since accu’ and recip are not aware of such changes after E[m]. recip suffers from this

problem more severely since it only looks at r probability values but accu’ looks at E[m]

values. Overall, we can see accu’ provides a reasonable time–quality tradeoff, and we will

use this approximation for our policy. It is an interesting question whether we can derive

error bounds for accu’.

87



5.4.3 Approximation of Expected Cost

We can approximate the expected cost (2.13) as follows:

E[cr | x,Di] ≈ 1 + Pr(y = 1 | x,Di)E[m+] + Pr(y = 0 | x,Di)E[m−] ≡ f(x), (5.15)

where E[m+] ≈ E[cr−1 | x, y = 1,Di], E[m−] ≈ E[cr | x, y = 0,Di], and Pr(cr−1 | x, y = 1,Di)

and Pr(cr | x, y = 1,Di) are assumed to be npb distributions defined by posterior marginal

probabilities (in descending order) after the respective conditioning . We use accu’ to

compute the approximate expectations. In every iteration, we choose x minimizing f(x). We

will call this policy efficient nonmyopic cost effective search, or ences.

We further propose to adapt our policy by treating the remaining target r as a tuning

parameter. In particular, we argue that it is better to set this parameter smaller than the

actual remaining target. The rationale is three-fold: (1) the approximation based on the npb

distribution typically overestimates the actual expected cost, since we are pretending the

probabilities will not change after the current iteration, whereas actually the top probabilities

defining the npb distribution will increase considerably as we discover more positives. So

the actual expected cost should be much smaller. (2) even if the ci assumption is correct,

planning too far ahead might hurt if the model is not accurate enough; after all, “all models

are wrong.” (3) setting r smaller makes the bounds on the expectation much tighter, hence

pruning is much more effective (see 5.4.4 about pruning).

We consider two schemes: setting r to a constant or proportional to the remaining target.

For example, ences-10 means we always set r = 10 if the remaining target is greater than

10, otherwise we use the actual remaining target; and ences-0.2 means we set r to be 20%

of the actual remaining target.

88



5.4.4 Lazy Evaluation for Pruning

To further improve the computational efficiency, we develop similar pruning techniques as for

policies in the budgeted case. Assume we have upper bounds p̂ of the probabilities after one

additional positive observation: that is ∀x ∈ X \ Di,

p̂(x) ≥ Pr(y | x,Di, x′, y′ = 1),∀x′ ∈ X . (5.16)

We can compute a lower bound of E[m+] using p̂. If we also assume observing a negative

does not increase the probability of any other point (the k-nn model satisfies this condition),

then a natural probability upper bound after observing a negative point is simply the current

probability

Pr(y | x,Di) ≥ Pr(y | x,Di, x′, y′ = 0), (5.17)

and we can compute a lower bound of E[m−] using Pr(y | x,Di). Combining both lower

bounds we get a lower bound of f(x),∀x ∈ X \Di. It is easy to see the bound is tighter with

smaller r. This bound can be used to prune points in a similar fashion as in [45].

To find the point x∗ = arg minx f(x), we evaluate the candidate points in increasing order

of the lower bound, and maintain the minimum of currently evaluated points as an upper

bound of min f(x); we can stop whenever the lower bound becomes greater than the upper

bound. We will show that often only a very small percentage (e.g. 1%) of the candidate

points need to be evaluated in each iteration.

89



5.5 Experiments

We conduct experiments to compare our proposed policy against three baselines:

greedy: always chooses a point with the highest probability. It is an equivalent of choosing

the point furthest from the separating hyperplane in the case of an svm model [99]. It has

been shown that this baseline is hard to beat in the total recall setting [37].

two-step: the budgeted two step lookahead policy as defined in (5.6). Note we use (5.6)

instead of (5.5) since (5.5) looks ahead by considering the maximum probability a point

would lead to if it is negative, so it does not make much sense to use this policy with k-nn,

which only models positive correlations.

ens: the efficient nonmyopic search policy recently developed in Chapter 3 for the budgeted

setting, This policy was shown to perform remarkably well in various domains due to its

adaptation to the remaining budget. However, to apply it in the ceas setting, we have to

make a simple modification since these is no concept of budget. We also experiment with

two schemes of setting b: constant or proportional to the remaining target. We test ens-10,

30, 50, 70 and ens-0.1, 0.3, 0.5, 0.7 and compare our method against the best one. Such b’s

underestimate the true budget, but the same rationale given in Sec. 5.4.3 applies.

We run our policies with r = 10, 20, 30, 40, 50 and 0.1, 0.2, 0.3, 0.4, 0.5 and also report the

results of the best one (on average) in each scheme. Full results can be found in Appendix

D.1. We report results on drug and materials discovery data. In all our experiments, we start

the search with a single randomly selected positive point and repeat the experiment 30 times.

90



Table 5.2: Results on materials discovery data. Averaged over 30 experiments.

50 100 200 300 400 500 1000 1500 average
greedy 84.5 175.0 347.7 522.5 721.8 924.1 2025.9 2981.7 972.9
two-step 86.0 179.1 349.0 533.2 735.0 938.1 1973.1 3019.4 976.6
ens-70 81.5 165.1 337.7 524.6 720.0 910.0 1790.6 2757.0 910.8
ens-0.7 80.2 167.8 328.4 509.7 708.6 887.4 1798.5 2773.6 906.8
ences-50 85.2 156.4 330.8 518.4 701.4 885.7 1745.4 2753.2 897.1
ences-0.5 87.1 164.3 336.9 513.7 683.9 891.9 1774.1 2724.0 897.0

5.5.1 Finding Bulk Metallic Glasses

We conduct experiments on the materials discovery dataset as introduced in previous chapters.

We test T = 50, 100, 200, 300, 400, 500, 1000, 1500. Table 5.2 shows the average cost. We

again highlight the entries with lowest cost in boldface, and those not significantly worse

than the best in blue italic, under one sided paired t-tests with α = 0.05.

We summarize the results as follows: (1) all of the nonmyopic policies outperform greedy,

and two-step performs on par with greedy. (2) ences variants are mostly the best or

not significantly worse than the best. (3) ens is a strong baseline, being the best or not

significantly worse than ences for several cases. (4) ences with r being half of the remaining

target performs the best on average, but r = 50 is not significantly worse.

5.5.2 Drug Discovery

We use the first nine ECFP4 drug discovery datasets described in previous chapters 10. The

number of positives in the nine datasets are 553, 378, 506, 1023, 218, 916, 1024, 431, and

255, with a shared pool of 100 000 negatives. We set T = 50, 100, 150, 200. The average costs
10The 10th dataset has 221 positives and it takes a long time to finish the experiment with T = 200

91



Table 5.3: Averaged results over 30 repetitions and nine drug discovery datasets.

50 100 150 200 average
greedy 215.7 414.4 503.2 587.4 430.2
two-step 71.7 156.0 243.2 322.4 198.4
ens-30 58.8 134.9 208.3 283.3 171.3
ens-0.7 59.1 132.8 212.0 284.2 172.0
ences-20 56.3 112.7 184.5 255.1 152.2
ences-0.2 72.9 116.0 194.8 298.9 170.7

are shown in Table 5.3. Each entry in this table is averaged over the nine datasets and 30

experiments each, comprising a total of 270 experiments for each policy and target T .

We see a consistent winner: ences-20. On average it outperforms all baselines by a large

margin. In particular, it improves over greedy by a 56–73% reduction in average cost.

ences–0.2 also performs very well and is at least not significantly worse than ences–20

when T = 50. Though we only presented results of our method with the best parameters, we

point out that it always outperforms greedy by a large margin for all other parameters.

Full results can be found in Table D.2. Also note that the tested ens variants – which

solve the ceas problem by reducing it to the budgeted setting – are much better than the

myopic methods, but still significantly worse than our proposed method, which suggests it is

beneficial to design specific policies for cost effective setting.

To gain insight into the behavior of these policies, in Figure 5.3 we plot the average cost

for each policy until T = 200 positives are found. The individual curves for each of the

nine datasets are shown in Figure D.1. We only show ences–20 and ens–30 in this plot;

the curves of ences–0.2 and ens–0.7 are very similar. We see the average cost of greedy

exhibits a “piecewise linear” shape. This is likely due to its greedy behavior [46]: the method

exploits high probability points around a discovered positive neighborhood until exhausted.

Afterwards it has to spend a long time to stumble upon another neighborhood, as its greedy

92



0 50 100 150 200

0

200

400

600

number of positives found

av
er

ag
e

co
st

greedy
two-step
ens
ences

Figure 5.3: Average cost versus the number of positives found, averaged over 9 drug discovery
datasets.

behavior did not reveal much information about the space. These episodes of exploitation

followed by random search result in the observed discontinuity of the learning curve. In

contrast, two-step and ens exhibit much smoother behavior with minimal discontinuity.

In fact ences has almost perfectly linear cost w.r.t. T , with the slope only slightly greater

than one. This is a very desirable property for cost effective active search.

5.5.3 Pruning Effectiveness

We also show the effectiveness of the pruning technique in Table 5.4. The third row shows

the average percentage of pruned points over all candidates in each iteration; the average is

taken over all iterations and all experiments. We see the pruning is very effective on all tested

datasets; most of the time only 1% of the points need to be evaluated in each iteration.

93



Table 5.4: Average pruning rate across all iterations in all experiments for the reported ences
policies.

bmgs drug discovery

ences-50 ences-0.5 ences-20 ences-0.2
98.64% 98.01% 99.03% 99.06%

5.6 Conclusion

In this chapter, we introduced and studied cost effective active search under the Bayesian

decision-theoretic framework. This is the first principled study of the problem in the literature.

We derived the Bayesian optimal policy and proved a novel hardness result: the optimal

policy is extremely inapproximable, with approximation ratio bounded below by Ω(n0.16).

We then proposed an efficient strategy to approximate the optimal policy using the negative

Poisson binomial distribution and proposed efficient approximations for its expectation.

We demonstrated the superior performance of our proposed policy to several baselines,

including the widely used greedy policy and the state-of-the-art nonmyopic policy adapted

from budgeted active search. The performance on drug discovery was especially encouraging,

with a 56–73% cost reduction on average compared to greedy sampling.

Regarding the tuning parameter in our policy, one rule-of-thumb is to set it to be relatively

small (e.g., ≤ 50 or ≤ 50% of the remaining target). How to adapt it in a more principled

way is an interesting future direction. Another future direction is to extend the proposed

method to batch setting, where multiple points are evaluated simultaneously.

94



Chapter 6

Bayesian Optimization and Beyond

In this chapter, we propose a novel efficient and nonmyopic approximation framework for

general sed, called binoculars: batch-informed nonmyopic choices, using long-horizons

for adaptive, rapid sed. binoculars is inspired by the fact that the optimal batch (or

non-adaptive) design is an approximation to the optimal sequential (or adaptive) design. In

fact, the optimal adaptive and non-adaptive designs are exactly the same in some notable

cases where the data utility does not depend on the observed outcomes, such as maximizing

information gain for a fixed Gaussian process (gp) [52]. Even when this is not the case,

we show that the optimal batch expected utility is a lower bound of the optimal sequential

expected utility. Furthermore, it is tighter than the one-step optimal policy’s implied expected

utility. Motivated by this insight, binoculars iteratively computes an optimal batch of

designs, then chooses one point from this batch. While many existing methods construct

batch policies by simulating a sequential policy [18, 31, 45], binoculars goes the other way

and “reduces” sequential design to batch design.

binoculars is a general framework applicable to any sed problem, but we only focus

on continuous domain in this Chapter. We realize this framework on two important yet

fundamentally different sed tasks: Bayesian optimization (bo) [55, 67, 82] and Bayesian

95



quadrature (bq) [20, 57, 70]. In bo, an agent repeatedly queries an expensive function

seeking its global optimum, whereas in bq the goal is to estimate an intractable integral of

the function.

For both problems, many popular policies are myopic: examples include expected improvement

(ei) for bo [67] and uncertainty sampling (unct) for bq [38]. These are all one-step optimal

for maximizing particular utility functions in expectation. While they are computationally

efficient and give reasonably good empirical results, they are liable to suffer from myopia and

over-exploitation. Nonmyopic alternatives have recently been applied to bo [35, 56, 105], and

although results are promising, these are typically costly to compute.

Our contributions in this chapter can be summarized as follows: (1) We propose a general

framework for efficient and nonmyopic sed with finite horizons, inspired by the close connection

between optimal sequential and batch designs. (2) We realize the framework on two important

sed problems: Bayesian optimization and Bayesian quadrature. This represents the first

nonmyopic policy proposed for bq. (3) We conduct thorough experiments demonstrating that

the proposed method significantly outperforms the myopic baselines and is competitive with

(if not better than) state-of-the-art nonmyopic alternatives, while being much more efficient.

At last, we also briefly discuss a more advanced technique called one-shot optimization for

multi-step lookahead Bayesian optimization, and show promising preliminary results.

6.1 Background on Gaussian Processes

In this chapter, we will make extensive use of Gaussian processes, a powerful probabilistic

modeling technique. A Gaussian process (gp) defines a distribution over functions, such that

96



the function values of any finite set of locations follow a multi-variate Gaussian distribution. A

gp is fully specified by a mean function µ : X 7→ R and a covariance function k : X ×X 7→ R

(also known as kernel function). For any finite set of locations X = [x1, x2, . . . , xn], the

function values Y = [f(x1), f(x2), . . . , f(xn)] follow a joint Gaussian distribution defined as

follows:




f(x1)

f(x2)

...

f(xn)




v N







µ(x1)

µ(x2)

...

µ(xn)




µ(X)

,




k(x1, x1) k(x1, x2) . . . k(x1, xn)

k(x2, x1) k(x2, x2) . . . k(x2, xn)

. . . . . . . . . . . .

k(xn, x1) k(xn, x2) . . . k(xn, xn)




k(X,X)




. (6.1)

This is the prior belief. After observing D ≡ (X, Y ), the posterior belief about f is still a

Gaussian process. In particular, for any set of locations X∗ ⊆ X , their function values Y∗

follows a joint Gaussian distribution with mean vector and covariance matrix as follows:

µf |D(X∗) = µ(X∗) + k(X∗, X)k(X,X)−1k(X,X∗)(Y − µ(X)), (6.2)

kf |D(X∗, X∗) = k(X∗, X∗)− k(X∗, X)k(X,X)−1k(X,X∗), (6.3)

where µ(X∗) and k(X∗, X) are defined similarly as µ(X) and k(X,X).

A common kernel function is squared exponential:

k(x, x′) = σ2
f exp

(
−‖x− x

′‖2

2`2

)
,

where σ2
f is called signal variance and ` is input length scale. These are hyperparameters of the

gp. A common approach to determine these hyperparameters is type II maximum likelihood

97



estimation. That is, θ = arg maxθ log Pr(Y | X), where Pr(Y | X) is the multi-variate

Gaussian density function as defined in (6.1). More details can be found in the gpml book

[74].

6.2 binoculars

We will first illustrate the intuition behind binoculars and provide explicit mathematical

justification. We will then realize binoculars for two specific sed scenarios: bo and bq.

Throughout the rest of this work, we will make extensive use of Gaussian processes (gps) to

model the underlying function f .

6.2.1 Intuition

Consider the bo example in Figure 6.1, where we wish to maximize a one-dimensional

objective function over an interval, conditioned on initial observations at the boundary.

Suppose we are allowed to design two further function evaluations. The myopic ei policy

(introduced later) would greedily pick the middle point first, followed by a point bisecting

the left half of the domain. The resulting choices completely ignore the right half, where the

maximum happens to lie.

Now consider the following alternative for designing the observations: we first construct

the optimal batch of size two (2-ei). These points can be determined relatively efficiently

as recursion is not required and reflect a better approximation of the remainder of the

optimization than just looking one step ahead. We then pick any point from this batch and

use ei to choose the final point given the result. This policy results in well-distributed queries

98



true
mean
CI

(a) initial state (b) ei iteration 1 (c) ei iteration 2

0.0

0.2

0.4

0.6

2-step-EI
2-EI
EI

(d) ei, 2-ei and 2-step-ei (e) 2-ei iteration 1 (f) 2-ei iteration 2

Figure 6.1: An illustration of our proposed nonmyopic method applied to bo. (a) A function
in [−1, 1] drawn from a gp where the two end points are known to be zero. (b) and (c) show
two iterations of bo with the ei acquisition function. (d) ei, 2-ei and 2-step-ei curves with
their respective maximizers. (e) and (f) show two iterations of bo where the first point is
chosen from the two points maximizing 2-ei, and the second one is chosen by maximizing ei
(conditioned on the observation in iteration one).

and better performance. We can compare these decisions with the optimal (but expensive)

policy maximizing the full lookahead expected utility (2-step-ei in Figure 6.1d): our choices

are nearly perfect.

6.2.2 Non-Adaptive Utility as a Lower Bound of Adaptive Utility

Recall in a state where D is observed and there are k more steps to go, the general Bellman

equation (2.13) for the k-step lookahead expected (marginal) utility is:

vk(x | D) = v1(x | D) + Ey[max
x′

vk−1(x′ | D ∪ {(x, y)})]. (6.4)

The optimal adaptive policy maximizes this expected utility.

99



Imagine the remaining k experiments X = {x1, . . . , xk} must be designed simultaneously

given current observations D. The expected marginal utility of the resulting observations is

V (X | D) = EY [u(D ∪ {(xj, yj)}kj=1)− u(D)], (6.5)

where we capitalized v to denote batch utility, and the expectation is taken over the joint

distribution of Y = {y1, . . . , yk}, p(Y | X,D). Rewriting (6.5) by decomposing X into xj and

X−j where X−j = X \ {xj}, we have (by telescoping sum)

V (X | D) = V (xj | D) + Eyj
[
V
(
X−j | D ∪ {(xj, yj)}

)]
. (6.6)

Let X∗ ∈ arg maxX V (X | D) be an optimal batch of experiments. For any x∗j ∈ X∗, it

follows that

Ey∗j
[
V
(
X∗−j | D ∪ {(x∗j , y∗j )}

)]
= max

X−j
Ey∗j
[
V
(
X−j | D ∪ {(x∗j , y∗j )}

)]
, (6.7)

as otherwise we can construct a batch with higher utility than V (X∗ | D). Therefore, given

that the expected reward of the entire batch can be decomposed using (6.6), choosing any

experiment x∗ ∈ X∗ is equivalent to solving the following optimization: x∗ ∈ arg maxx v
′
k(x |

D) where

v′k(x | D) = v1(x | D)] + max
X′:|X′|=k−1

Ey
[
V
(
X ′ | D ∪ {(x, y)}

)]
. (6.8)

Comparing (6.8) and the Bellman equation (6.4), we see two differences: 1) the expectation

and maximization are exchanged in the future utility term and 2) the adaptive utility is

replaced by a non-adaptive counterpart. As such, (6.8) is clearly a lower bound of the true

100



expected utility :

max
X′:|X′|=k−1

Ey
[
V
(
X ′ | D ∪ {(x, y)}

)]

≤ Ey
[

max
X′:|X′|=k−1

V
(
X ′ | D ∪ {(x, y)}

)]
(6.9)

≤ Ey
[
max
x′

vk−1

(
x′ | D ∪ {(x, y)}

)]
. (6.10)

This is illustrated in Figure 6.1d: 2-step-ei corresponds to (6.4), and 2-ei to (6.8). An

interesting open question is the tightness of this bound, closely related to the so-called

adaptivity gap [45, 52]. The similarity between these formulations provides mathematical

justification for using (6.8) to approximate the optimal policy. Note that (6.8) is exactly equal

to (6.4) if the remaining experiments become conditionally independent given the observed

data, in which case there is no advantage to adaptation.

We also draw a connection between binoculars and ens. If we relate (6.9) and (3.7), we

can see the future utility approximation in (3.7) has exactly the same form as (6.9), albeit

with different utility definitions. Therefore, if the utility function is the same, binoculars

maximizes a looser lower bound of the true expected utility than ens.

6.2.3 Efficient Nonmyopic Approximation Framework

binoculars is summarized in Algorithm 2. The primary computational cost comes from

computing the optimal batch, a high-dimensional optimization problem. For the examples

considered below (bo and bq), this optimization can be done using gradient-based methods

and we show empirically that binoculars runs much faster than previously proposed

nonmyopic methods (see section 6.7). Note that while we do use a batch method, it is only
101



as a subroutine. Algorithm 2 is for sequential experimental design: in each iteration, we only

observe the outcome of one experiment.

Algorithm 2 binoculars

Input: design space X , response space Y, model p(y | x,D), utility function u(y | x,D),
budget T
Output: D, a sequence of experiments and observations
for i← 0 to T − 1 do
Compute the optimal batch X∗ of size T − i
Choose an experiment x∗ ∈ X∗ and observe response y∗ {see 6.5 on how to choose}
Augment D = D ∪ {(x∗, y∗)}

6.3 binoculars for Bayesian Optimization

Consider the task: x∗ = arg maxx∈X f(x), where f is modeled as a gp. Suppose we have

a budget of T function evaluations. Once the budget has been expended, we recommend

the point with the highest observed value as the maximizer of f . In this setting, our goal is

to sequentially select a set X = {x1, x2, . . . , xT} of T points from X such that max{yj} is

maximized, where yj = f(xj)
11.

A natural utility function for this problem is

u(D) = max
(x,y)∈D

y. (6.11)

Expected improvement. The well known expected improvement (ei) acquisition function

is precisely the one-step value function as defined in (2.5) under utility definition (6.11). Let
11Typically y is a noisy observation of f(x). Here we assume a noiseless setting for simplicity of presentation.

Our method naturally generalizes to noisy setting if plug in appropriate noise model and utility function.

102



D be current observations, yD = u(D) be the best value observed so far. If we plug in the

utility function and we have

v1(x | D) =

∫

y

(u(D1)− u(D)) Pr(y | x,D)dy

=

∫

y

(max{y, yD} − yD)) Pr(y | x,D)dy

=

∫

y

(y − yD)+N(y;m(x), σ2(x))dy, (6.12)

where (a)+ = max(a, 0), and N(y;m(x), σ2(x)) is the normal density function with mean

m(x) = µf |D(x) and variance σ2(x) = kf |D(x, x) dictated by the posterior Gaussian process

defined in (6.2) and (6.3).

The integral in (6.12) is analytic, we can derive the formula for ei [7]:

EI(x) = v1(x | D) = (m(x)− yD) · Φ(Z) + σ(x) · φ(Z), (6.13)

where Z = m(x)−yD
σ(x)

. Though myopic, EI(x) increases with higher posterior mean m(x) or

higher the variance σ2(x), balancing exploitation and exploration to some degree. ei is

computational efficient and performs reasonably well, so it is arguably the most widely used

bo policy.

Note the two-step lookahead value function v2(x | D) is already analytically intractable as it

requires an expensive numerical integration: the integrand is maxx′ v1(x′ | D, x, y) and entails

global optimization!

Batch expected improvement. ei can be extended to the batch setting, known as qei

[31], where a batch of q points are selected in each iteration. Given a batch of q points

X = {x1, . . . , xq}, let yi = f(xi) be the corresponding (unknown) function values, and denote
103



Y = {y1, . . . , yq}. Similar to (6.12),

qEI(X) =

∫

y

(max{Y } − yD)+N(Y ;m(X),Σ(X))dy, (6.14)

where we replaced the function value y of a single candidate point x by the maximum of a

batch of function values max{Y }, and the single value Gaussian density by a multivariate

Gaussian density function. This integral is not analytically tractable anymore. We have to

resort to numerical approximation such as Monte Carlo:

qEI(X) ≈ 1

n

n∑

i=1

(max{Yi} − yD)+, (6.15)

where Yi, i = 1, . . . , n are n samples from N(Y ;m(X),Σ(X)). However, such approximation

loses dependence on X, hence we can not use gradient-based methods to optimize it. A

recently popularized reparameterization trick allows us to retain the dependence on X in

a differentiable way [94, 101]. Specifically, let ξi ∈ Rq be a sample from the standard q

dimensional Gaussian distribution N(0, Iq); let L(X) be the matrix square root of Σ(X), i.e.,

Σ(X) = L(X)L(X)T , then

Yi = m(X) + L(X)ξi (6.16)

is a sample from N(m(X),Σ(X)). We can plug in such reparameterized Yi samples in (6.15),

and the approximation is differentiable w.r.t. X as long as m(X) and L(X) are differentiable.

Typically, m(X) is polynomial and L(X) is the Cholesky decomposition of Σ(X); they are

both differentiable w.r.t. X [68].

binoculars for bo. To apply binoculars to bo, we optimize the batch ei objective,

qei, and then pick a point from the optimal batch; how to pick this point is discussed later.

104



binoculars trivially extends to other utility functions such as knowledge gradient [102],

probability of improvement [55] and predictive entropy [81] by replacing qei appropriately.

6.4 binoculars for Bayesian Quadrature

Consider a non-analytic integral of the form Z =
∫
f(x)π(x) dx, where f(x) is a likelihood

function and π(x) is a prior. Such integrals frequently occur in Bayesian inference (e.g.,

Bayesian model selection and averaging). Bayesian quadrature operates by placing a gp on

the integrand and then minimizing the posterior variance of Z:

Var[Z | X] =
∫∫

KX(x, x′)π(x)π(x′) dx dx′, (6.17)

where X = {x1, x2, . . . , xT} is a set of T points that needs to be optimized, and KX(x, x′) is

the posterior covariance after conditioning on observations at X. If the gp hyperparameters

are fixed, the optimal design X∗ = argminXVar[Z | X] can be precomputed, as the posterior

covariance of a gp does not depend on the observed values f(X); this effectively eliminates

the need for sequential experimental design in this setting.

However, in general the hyperparameters are not fixed a priori, but are instead learned

iteratively in light of new observations. Furthermore, when the integrand is known to be

positive (e.g., a likelihood function), it is often a good practice to place a gp on some

non-linear transformation of f , such as
√
f or log(f) [8, 38, 71]. As a result, the posterior

gp must be approximated (e.g., by moment matching), which causes the posterior covariance

to depend on the observed values. In these cases adaptive sampling becomes critical.

105



The adaptive version of Var[Z | X] is computationally expensive to evaluate so [38] proposed

the use of uncertainty sampling (unct) [58, 80] as a surrogate, i.e. sequentially evaluating

the location with the largest variance. This greedily minimizes the entropy of the integrand

instead of the integral.

Formally, we use the differential entropy of the multivariate Gaussian f(X) as the utility

function:

H(Y | X) = 1
2

log
(

det
(
2πeK(X,X)

))
. (6.18)

Using the chain rule for differential entropy, this quantity can be expressed in the same form

as (2.13):

H(Y | X) = H(yj | xj) + Eyj [H(Y−j|X−j, xj, yj)]. (6.19)

Note that arg maxxj H(yj | xj) corresponds to the sequential uncertainty sampling policy.

To apply binoculars for bq, we must find arg maxXH(Y | X), which is the mode of a

determinantal point process (dpp) [53] defined over q = |X| points. This can be done using

gradient-based optimization. Note that this formulation can be applied to active learning of

gps, where uncertainty sampling is also a common strategy.

6.5 Practical Considerations

Some practical issues arise when applying binoculars to real problems. First, given an

optimal batch, how should one go about selecting a point from this batch? We considered

several options: selecting the point with the highest expected immediate reward or randomly

selecting a point, either proportional to their expected immediate reward or simply uniformly.

106



Empirically, we found that “best” and “proportional sampling” perform similarly while “uniform

sampling” is worse than the other two methods.

Second, given that binoculars is only an approximation to the optimal policy, it is not

necessarily true that setting q to the exact remaining budget is the best. In theory, if the

model is perfect, then full lookahead is optimal. However, in practice, the model is always

wrong and thus planning too far ahead could hurt the empirical performance [105]. Further,

smaller values of q result in more efficient computation. We empirically study the choice of q

in section 6.7.

6.6 Related Work

Bayesian optimization (bo) is a sample-efficient global optimization method that dates back

to the 1960s [54, 55]. It has been popularized in recent years due to its promise in optimizing

machine learning hyperparameters [86]. Most of the research in this area focuses on the

design of policies, often induced by maximizing so-called acquisition functions. Notable

examples include probability of improvement [55], expected improvement [67, 78], knowledge

gradient [23], upper confidence bound [87], Thompson sampling [49, 79, 91], (predictive)

entropy search [39, 40], etc. We refer to [82] for a literature survey.

On the subject of nonmyopic bo, [72] derived the optimal policy for bo, and demonstrate

that it is possible to approximately compute (with great effort) the two-step lookahead policy

for low-dimensional functions and that it generally performs better than the one-step policy.

[29] also derived the optimal policy and gave an explicit example where two-step ei is better

than one-step ei in expectation with a desired degree of statistical significance. [35] proposed

107



a nonmyopic approximation of the optimal policy, known as glasses, by simulating future

decisions using a batch bo method.12 [45, 46] proposed a nonmyopic policy for (batch) active

search, which can be understood as a special case of bo with cumulative reward, using a

similar idea. [56] proposed to use rollout for bo, which is a classic approximate dp method [6].

[105] presented theoretical justification for rollout, and gave theoretical and practical guidance

on how to choose the rollout horizon. [60] proposed a branch-and-bound near-optimal policy

for gp planning assuming that the reward function is Lipschitz continuous, and applied it to

bo and active learning. [103] proposed a gradient-based optimization of two-step ei, but each

evaluation of two-step ei still requires a quadrature subroutine with an expensive integrand:

optimization of one-step ei.

Of these, glasses and rollout are most related to binoculars. glasses’s acquisition

function shares almost the same form as (6.8), except the future batch X ′ is constructed

using a heuristic batch policy, instead of optimized with the qei objective. The batch policy

adds points one by one by optimizing the sequential ei function penalized at locations already

added to the batch [33], and the expected utility of the chosen batch is estimated using

expectation propagation.

Rolling out two steps using ei as the heuristic policy is exactly equivalent to the two-step

lookahead policy, up to quadrature error. Mathematically, the rollout acquisition function

can also be written in a similar form as (6.8), except X ′ is adaptively constructed, depending

on sampled values of y instead of globally (irrespective of y) constructed or optimized as in

glasses and binoculars. Both rollout and glasses are very expensive to compute.

While we are unaware of any existing work on nonmyopic bq, there has been some prior

work on nonmyopic active learning of gps. [52] derived the adaptivity gap for active learning
12The name binoculars is inspired by glasses.

108



of gps under two utility functions. They also proposed a nonmyopic method for active

learning of gps which separates the process into an exploration phase and an exploitation

phase. They considered different acquisition functions for the exploration phase; notably,

the implicit exploration (ie) method is comparable to the uncertainty sampling baseline in

subsection 6.7.2. [41] developed a method for active learning of gps that does away with

separate exploration and exploitation phases and instead naturally trades off between the

two. Their proposed policy, ε-bal, approximates the solution to the Bellman formulation

of the active gp learning problem using a truncated sampling method. They analyzed the

theoretical performance of their method and also developed a pruning-based anytime version

of their method.

The setting of our bq work (integration of non-negative integrands) and active learning of

gps appear related yet are fundamentally different. The cited works focus exclusively on

learning the hyperparameters of the gp. In our setting, the use of a transformation to model

non-negativity introduces adaptivity beyond the gp hyperparameters: even if the true gp

hyperparameters are known a priori, the nonlinear transformation causes the approximate

gp posterior to depend on the observed values.

6.7 Experiments

We designed our experiments to broadly test the performance and computational cost of

binoculars relative to notable myopic and nonmyopic baselines for bo and bq. We also

conducted a thorough exploration of the binoculars design choices: the number of steps to

look ahead and how to select a point from the optimal batch.

109



The primary takeaways of our experimental results are that binoculars outperforms myopic

baselines while running only slightly slower and is at least as good as previously proposed

nonmyopic methods while running orders of magnitude faster. This places it on the Pareto

front of the running time–performance tradeoff in policy design. Furthermore, binoculars

clearly demonstrates distinctively nonmyopic behavior on both bo and bq tasks, two entirely

different sed problems.

We use the following nomenclature to describe binoculars: our nonmyopic bo method

will be denoted as “q.ei.s” or “q.ei.b”, where q is the batch size and “s” represents sampling

from the batch while “b” means choosing the “best.” For bq, we replace “ei” with “dpp.” In

addition to the myopic methods, ei and unct, we also compare against rollout for both tasks

and glasses for bo.13 Each rollout method is denoted as “q.r.n”, where q represents the

number of steps to roll out, and n is the number of samples used to estimate the expectations

encountered in each step. Each glasses method is denoted as “q.g” where q represents

the size of the simulated batch. We use direct [48] to optimize the glasses and rollout

acquisition functions, following [35]. For all nonmyopic methods, when the remaining budget

r < q, we set q = r. Thus the final decision is always made (optimally) with one-step

lookahead.

For all experiments, we start with 2d randomly-sampled observations and perform 20d further

iterations, where d is the function’s dimensionality. Unless otherwise noted, all results

presented are aggregated over 100 repeats with different random initializations. For all

tabulated results, the best method is indicated in bold and the entries not significantly worse

than the best (under a one-sided paired Wilcoxon signed-rank test with α = 0.05) are in blue

italics.
13We did not compare against a bq-equivalent of glasses as no such method has been published.

110



6.7.1 BO Results

We implemented our nonmyopic bo policy and all baselines using BoTorch,14 which contains

efficient ei and qei implementations. We present experiments for two rollout variants: “2.r.10”

and “3.r.3.” As we will see, rolling out with horizon two is already very expensive even for

just ten y samples. Gauss–Hermite quadrature is used for rollout as in [56]. We also present

experiments for two glasses variants: “2.g” and “3.g”. We implemented a slightly different

version of glasses in BoTorch, using quasi Monte Carlo instead of expectation propagation

to estimate the expected improvement of the batch, a standard practice for computing qei in

state of the art bo packages such as BoTorch.

We use gps with a constant mean and a Matérn 5/2 ard kernel to model the objective

function, the default in BoTorch. We tune hyperparameters every iteration by maximizing

the marginal likelihood using l-bfgs-b. We also maximize the qei acquisition function with

l-bfgs-b. We use the gap measure to evaluate the performance: gap = (yi − y0) / (y∗ − y0),

where yi’s are maximum observed values and y∗ is the true optimal value; we convert all

problems to maximization problems by negating if necessary.

Synthetic functions. In this section, we focus on demonstrating the superior performance

of our method over ei on nine “hard” benchmark functions. These nine functions are selected

by first running experiments on 31 functions15 with 30 repeats (see Table D.3). We then

select the ones where ei terminates with average gap < 0.9. We believe nonmyopic methods

are more advantageous on challenging functions; by first identifying these hard problems, we

will gain more insight into the various policies. To put the bo performance into perspective,

we also include a comparison against a random baseline, “Rand.”
14https://github.com/pytorch/botorch
15https://www.sfu.ca/~ssurjano/optimization.html

111



Table 6.1: Average gap over 100 repeats on “hard” synthetic functions.

Rand EI 2.EI.b 2.EI.s 3.EI.b 3.EI.s 4.EI.b 4.EI.s 10.EI.b 10.EI.s 12.EI.s 15.EI.s
eggholder 0.498 0.613 0.614 0.633 0.604 0.657 0.646 0.694 0.622 0.704 0.738 0.694
dropwave 0.486 0.439 0.507 0.531 0.473 0.552 0.467 0.514 0.397 0.591 0.598 0.585
shubert 0.355 0.408 0.366 0.441 0.394 0.507 0.388 0.484 0.305 0.455 0.479 0.465
rastrigin4 0.374 0.801 0.769 0.775 0.817 0.821 0.840 0.805 0.797 0.804 0.793 0.799
ackley2 0.358 0.821 0.825 0.823 0.819 0.869 0.812 0.872 0.801 0.892 0.886 0.888
ackley5 0.145 0.509 0.544 0.509 0.601 0.550 0.596 0.592 0.636 0.606 0.627 0.626
bukin 0.600 0.849 0.856 0.855 0.872 0.859 0.864 0.865 0.878 0.850 0.829 0.853
shekel5 0.038 0.286 0.311 0.320 0.330 0.343 0.342 0.344 0.374 0.373 0.358 0.395
shekel7 0.045 0.268 0.346 0.313 0.349 0.325 0.352 0.370 0.399 0.358 0.412 0.386
Average 0.322 0.555 0.571 0.578 0.584 0.609 0.590 0.616 0.579 0.626 0.635 0.632

0.0 0.2 0.4 0.6 0.8 1.0
normalized iteration number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

GA
P

EI
12.EI.s

Figure 6.2: Average gap over nine synthetic functions demonstrating the nonmyopic behavior
of 12.ei.s.

Table 6.1 shows the average gap at termination. We summarize the results as follows: (1)

All q.ei.s variants perform significantly better than ei on average, with 12.ei.s being the best

and outperforming ei by a large margin. (2) The q.ei.s variants are consistently better than

the q.ei.b variants (for better spacing we did not show results for 12.ei.b and 15.ei.b). (3)

The performance of our method generally improves as we increase q, up to 12.

Perhaps more interestingly, we can clearly observe the nonmyopic behavior of 12.ei.s as

shown in Figure 6.2: it is initially outperformed by the myopic ei as it explores the space.

However, our method catches up to ei at ∼20% of the budget (on average) as it transitions

to exploiting its findings until finally, it outperforms ei by a large margin. This behavior

112



Table 6.2: Average gap over 50 repeats on real functions.

EI 2.EI.s 3.EI.s 4.EI.s 6.EI.s 8.EI.s 2.G 3.G 2.R.10 3.R.3
svm 0.738 0.913 0.940 0.911 0.937 0.834 0.881 0.898 0.930 0.928
lda 0.956 1.000 0.996 0.993 0.982 0.995 1.000 0.999 0.999 1.000
LogReg 0.963 0.998 1.000 0.999 0.999 1.000 0.989 0.911 0.965 0.948
NN Boston 0.470 0.467 0.478 0.460 0.502 0.467 0.455 0.512 0.503 0.482
NN Cancer 0.665 0.627 0.654 0.686 0.700 0.686 0.806 0.755 0.708 0.698
Robotpush3 0.928 0.960 0.962 0.957 0.962 0.961 0.955 0.951 0.955 0.954
Robotpush4 0.730 0.726 0.695 0.695 0.736 0.697 0.765 0.786 0.770 0.745
Average 0.779 0.813 0.818 0.815 0.831 0.806 0.836 0.830 0.833 0.822

indicates that our method seamlessly navigates the exploration/exploitation tradeoff without

the need for any external intervention.

Real world functions. In this section, we compare our method against popular nonmyopic

baselines: rollout and glasses. We present results on hyperparameter tuning functions used

by [65, 86, 96]. These functions are evaluated on a predefined grid, so we first compute all

policies (except ei) using continuous optimization, then pick the closest point from the grid.

Table 6.2 shows the results averaged over 50 repeats. We only show the “sampling” variants

of our method; full results can be found in Table D.4. First we see again all q.ei.s variants

outperform ei by a large margin, with q = 6 achieving the best results. Comparing 6.ei.s

with the nonmyopic baselines, 2.g is the best, but the difference of 0.005 is negligible; the

p-value under a one-sided paired signed-rank test for 6.ei.s against 2.g is 0.4257.

We now focus on comparing the time cost of the tested methods. Figure 6.3 shows the average

gap versus average time per iteration; the average is taken over 350 experiments (seven

functions with 50 repeats each); error bars are also plotted. We again see that our methods

are not significantly different from rollout and glasses in terms of gap performance, but

are considerably faster in terms of average time cost per iteration (note the log scale on the

113



time axis). Clearly, our method lies on the Pareto front in terms of computational cost and

performance.

1s 10s 1min 10min 1h
log2(time/iter)

0.76

0.78

0.80

0.82

0.84

GA
P

EI

2.EI.s

6.EI.s
2.G 2.R.10

Figure 6.3: mean gap with error bars at termination versus time per iteration (in log scale)
averaged over the seven real functions.

We also attempted to compare with the recently published practical two-step ei method [103],

which is intended to be a more efficient version of our 2.r.n. As far as we understand, the

difference is first- versus zeroth-order optimization of the acquisition function. In fact, our

implementation of rollout already supports gradient-based optimization thanks to automatic

differentiation. However, we did not find it considerably faster than using direct. We leave

it to future work to optimize the implementation and compare with our method.

It is also possible to further improve rollout’s performance using an adaptive rolling horizon

in light of a recent study [105], but it would be even more expensive to compute. In fact,

Figure 1 in [105] shows that with their adaptive horizon approach, the most frequently chosen

horizon was two.

114



6.7.2 BQ Results

We implemented our nonmyopic bq policy and all baselines using the gpml matlab package.16

For all bq experiments, we use the framework of [8]: we place gp priors on the log of the

integrands as they are all non-negative. We use gps with a constant mean and a Matérn 3/2

ard kernel to model the integrands. We tune the gp hyperparameters after each observation

by maximizing the marginal likelihood using l-bfgs-b. We also use l-bfgs-b to maximize

the dpp likelihood. Complete details of our implementation can be found in our attached

code.

We perform experiments on five standard benchmark synthetic functions17 as well as one

additional synthetic benchmark and two real model likelihood functions used by [9]. The

additional synthetic benchmark is: f(x) =
∏d

i=1
sin(xi)+cos(3xi))

2/2
x2i/4+0.3

; this function was included

because of its multi-modal (mm) nature. We evaluate the performance of all methods using

their fractional error: |Z − Ẑ|/Z where Ẑ is the estimate of the integral.

Figure 6.4a indicates that 2.dpp.s exhibits the same nonmyopic behavior as 12.ei.s: it initially

lags behind but eventually overtakes the myopic unct, again suggesting a superior and

automatic tradeoff of exploration and exploitation.

Table 6.3 shows the median fractional error at termination for all bq experiments. Figure 6.4

shows the convergence of the fractional error as a function of both iterations and time (in

log scale). These results corroborate many of the findings from our bo experiments: (1) All

nonmyopic methods outperform unct on average. (2) Our proposed nonmyopic methods are

competitive with, if not better than, rollout while running orders of magnitude faster.
16http://gaussianprocess.org/gpml/code/matlab
17https://www.sfu.ca/~ssurjano/integration.html

115



Table 6.3: Median fractional error values over 100 repeats on all bq functions.

UNCT 2.DPP.b 3.DPP.b 10.DPP.b 2.DPP.s 3.DPP.s 10.DPP.s 2.R.10 3.R.3
cont 0.045 0.052 0.055 0.059 0.039 0.037 0.029 0.036 0.045
corner 0.265 0.206 0.137 0.065 0.047 0.078 0.132 0.074 0.063
discont 0.523 0.511 0.488 0.446 0.572 0.610 0.590 0.537 0.577
Gauss 0.004 0.004 0.005 0.006 0.003 0.003 0.003 0.004 0.003
mm 0.254 0.207 0.203 0.207 0.221 0.161 0.177 0.110 0.086
prod 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.012 0.012
gp 0.231 0.082 0.057 0.077 0.069 0.073 0.116 0.283 0.248
dla 0.019 0.013 0.025 0.013 0.016 0.016 0.033 0.019 0.011
Average 0.068 0.056 0.055 0.041 0.037 0.043 0.055 0.049 0.051

0.2 0.4 0.6 0.8 1.0
normalized iteration number

0.1

0.2

0.3

0.4

0.5

fra
ct

io
na

l e
rro

r

UNCT
2.DPP.s

(a)

0.2 0.4 0.6 0.8 1.0
normalized iteration number

0.3

0.2

0.1

fra
ct

io
na

l e
rro

r

UNCT
2.DPP.b
10.DPP.b
3.R.3

(b)

1s 1min 10min 1h 3h
log2(time)

0.3

0.2

0.1

fra
ct

io
na

l e
rro

r

UNCT
2.DPP.b
10.DPP.b
3.R.3

(c)

Figure 6.4: Median fractional error over 100 repeats against iterations or time. (a) synthetic
functions, (b) real functions, (c) real functions.

We also note that in general, q.dpp.s variants tend to outperform q.dpp.b variants and

increasing the batch size q does not consistently improve the performance.

The primary conclusion here is the same as for bo: binoculars significantly and consistently

outperforms myopic policies while only slightly increasing computational cost.

116



6.8 Multi-Step Lookahead via One-Shot Optimization

Before we conclude this chapter, we introduce an ongoing effort that makes multi-step

lookahead Bayesian optimization possible. We will introduce the idea and show some

preliminary results, on top of binoculars. The approach presented in this section is also

applicable to any continuous sed problems, but we focus on Bayesian optimization.

We illustrate the idea with the simplest case: two-step lookahead. Recall the two-step value

function for Bayesian optimization (or any sed problem) is as follows:

v2(x | D) = v1(x | D) + Ey
[

max
x′

v1(x′ | D1)
]
. (6.20)

To evaluate v2(x | D), we must resort to numerical integration since the expectation in

the second term is not analytically tractable. Let y1, . . . , ym be m samples drawn from

Pr(y | x,D), then a Monte Carlo approximation would be

v2(x | D) ≈ v1(x | D) +
1

m

m∑

i=1

max
x′

v1(x′ | D, x, yi) ≡ g(x). (6.21)

Note each evaluation of g(x) involves m optimization problems, hence very expensive.

6.8.1 Previous Work on Two-Step Lookahead bo

There has been several attempts for two-step lookahead bo [29, 56, 72], but it was not until

recently that it was claimed practical due to [103]. An approximate gradient estimate method

is proposed in [103], which allows us to optimize the two-step lookahead value function with

gradient-based methods. The method to differentiate g(x) is based on envelope theorem.

117



Basically, for each yi, we first perform optimization to get x∗i = arg maxx′ v1(x
′ | D, x, yi),

and then plugging it back into g(x) we have

g(x) = v1(x | D) +
1

m

m∑

i=1

v1(x∗i | D, x, yi). (6.22)

Assuming x∗i is a global maximizer of v1(x′ | D, x, yi), then g(x) is differentiable w.r.t. x (see

Theorem 1 in [103] for more detailed requirements). [103] reported superior efficiency and

bo performance using stochastic gradient ascent to optimize g(x).

This approach is certainly an advance towards nonmyopic bo. However, it is still problematic

in two aspects: first, though less iterations (than zeroth-order optimization) are needed to

optimize g(x) as claimed in [103], each evaluation of g(x) still involves many optimizations,

hence still expensive; second, the assumption that x∗i ’s are global maximizers may not be

practical, especially when the v1(x′ | D, x, yi) surfaces are multi-modal. Note this assumption

must be satisfied for every x∗i , i = 1, . . . ,m; any violation will lead to discontinuity of g(x),

not to mention differentibility.

6.8.2 One-Shot Approach

A key observation is: we do not need to optimize v′(x′ | D, x, yi) to full extent to get an

ascent direction of g(x). In abstract terms, g(x) is a function of the form

g(x) ≡ max
x′1,...,x

′
m

h(x, x′1, . . . , x
′
m).

118



Observe that

max
x

g(x) = max
x,x′1,...,x

′
m

h(x, x′1, . . . , x
′
m). (6.23)

Instead of optimizing x′1, . . . , x
′
m to full extent to get an ascent direction of x, why not

optimize x and the x′1, . . . , x′m jointly? Note h is differentiable w.r.t. both x and x′1, . . . , x′m

for commonly used value functions such as expected improvement. This is precisely the idea of

one-shot optimization, first proposed to efficiently optimize the knowledge gradient acquisition

function [4], and here we adapt it to optimizing multi-step lookahead value function. We

solve the optimization on the right side of (6.23) instead of the left side, and the partial

solution x∗ from the full one [x∗, x∗1, . . . , x
∗
m] would be the maximizer of g(x). Intuitively this

may take more iterations than the envelope approach as discussed above, but each iteration

is much cheaper since no nested maximizations are required.

It is straightforward to extend this idea to general k-step lookahead by jointly optimizing

over the whole decision tree. If we draw m samples in each stage, there will be (1 +m+m2 +

. . .+mk−1)d = mk−1
m−1

d variables to jointly optimize, where d is the dimension of each x. The

dimension of the joint optimization problem grows exponentially w.r.t. the lookahead horizon

k, so it is still impractical for large k. But we are able to manage k = 4. Note k ≥ 3 was

never attempted before due to its dauntingly high computational complexity.

6.8.3 Preliminary Results

We show some preliminary results in Figure 6.5, averaged over the nine “hard” synthetic

functions (see Table 6.1) and 100 repetitions. We can see multi-step ei improves over ei by a

very large margin, and is even much better than the best variant of binoculars, 12.ei.s, as

119



1s 10s 1min 10min
log2(time/iter)

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

GA
P

EI

12.EI.s

2-step-EI

3-step-EI 4-step-EI

Figure 6.5: Preliminary results of multi-step lookahead Bayesian optimization via one-shot
optimization.

reported in Table 6.1.18 First we see two-step-ei only takes about 10 seconds per iteration on

average, and four-step-ei can be optimized well within 10 minutes. We also see the marginal

improvement of k-step-ei over (k − 1)-step-ei is diminishing. We conjecture that looking

more steps ahead intrinsically has diminishing return, but currently we can not rule out the

possibility that this was (at least partially) because the optimization of a larger horizon value

function becomes harder.

Remark 1. The one-shot optimization can be naturally extended to batch policies, and each

stage could have a different batch size. In particular, for the two-step case, if we set the

batch size of the first stage to one, and that of the second stage to be the remaining budget

minus one, then this is precisely an implementation of ens (see Chapter 3) for Bayesian

optimization.
18This part of work is done with an updated version of BoTorch, so we reran ei and 12.ei.s. The average

numbers shown in Figure 6.5 might be slightly different from what are reported in Table 6.1, but the patterns
about binoculars remain the same.

120



6.9 Conclusion

We proposed binoculars: an efficient, nonmyopic approximation framework for finite-

horizon sequential experimental design. binoculars computes an optimal batch, then picks

a point from the batch. We gave an intuitive understanding and a mathematical justification

for why this is a good approximation. We applied binoculars to Bayesian optimization

and Bayesian quadrature, two entirely different problems, and empirically demonstrated that

it significantly outperforms commonly used myopic policies while being much more efficient

than popular nonmyopic alternatives.

We also briefly discussed an ongoing work that makes multi-step lookahead Bayesian opti-

mization practical, which naturally generalizes to any continuous sed problems. The basic

idea is to jointly optimize all the variables in the whole decision tree in “one-shot”, instead

of repeatedly solving nested maximizations. Preliminary results show very promising bo

performance achieved with high computational efficiency.

As suggested by [105], it would be useful to derive theories to guide the choice of lookahead

horizon q for our method. Another interesting theoretical question is whether we can provide

explicit bounds for the adaptivity gap for general continuous sed problems.

121



Chapter 7

Conclusion and Future Work

In this thesis, we studied several important problems in sequential experimental design (sed),

with a focus on developing efficient and nonmyopic policies. The key idea of our nonmyopic

policies is to use the non-adaptive expected utility to approximate the adaptive expected utility,

which results in policies that maximize a lower bound of the true expected utility, much

tighter than myopic approximations yet computationally efficient. We implemented variants

of this idea for several sed settings such as active search, Bayesian optimization and Bayesian

quadrature. We demonstrated superior empirical performance in important application

domains such as drug discovery, materials discovery, model hyperparameter tuning, etc. We

often observe desirable behavior of our nonmyopic policies that well balances exploration and

exploitation in our experiments. We also established the theoretical hardness of active search

for both the budgeted and cost effective settings, and derived a lower bound on the adaptivity

gap for batch budgeted active search, which was shown to match with the empirical results.

This result could provide guidance on choosing batch sizes in practice. Finally, we discussed

a novel one-shot optimization technique that shows promising performance for multi-step

lookahead Bayesian optimization, which has never been attempted before. We believe our

122



contributions represent a significant advance towards efficient and nonmyopic sequential

experimental design, from both a theoretical and practical perspective.

In the remainder of the thesis, we discuss some future directions.

7.1 Theoretical Guarantees

We proposed many nonmyopic approximations for various problems throughout the thesis.

Despite their remarkable empirical performance, these approximations did not come with

theoretical guarantees. In fact, for active search we proved the performance gap between any

efficient policies and the optimal policy can be arbitrarily large. However, such pessimistic

results are for worst-case scenarios. The proof relies on constructing active search instances

that have very atypical dependence among the points, which makes the optimal policy hardly

approximable. Another extreme case is no dependence among the points at all, in which

even a random policy is optimal. The most interesting and practical cases lie in between.

It is thus natural to ask: under what practical regularity assumption on the structure of

the problem can we derive theoretical guarantees, and how? A possible starting point is to

confine the family of joint distributions over the label space, which is essentially multivariate

Bernoulli [17], so that the correlations among the Bernoulli variables reflect typical active

search instances in practice.

The approximation guarantee is related to the other theoretical result we had: adaptivity

gap. Since almost all our proposed nonmyopic solutions are based on the idea of “using the

non-adaptive expected utility to approximate the adaptive counterpart”, a natural first step

to bound the performance gap is to bound the adaptivity gap. What we derived is a lower

123



bound, but what we need is an upper bound. Note that the lower bound we derived is also

for the worst-case scenario, which relies on constructing active search instances structured in

a binary tree with extremely skewed probabilities for the dichotomizing branches. This is

also not typical in practice. With some regularity assumption on the probability distribution,

it should be possible to derive an upper bound. It is worth mentioning that the lower bound

matches with our empirical results, indicating the lower bound might also be an upper bound.

Therefore, a linear factor in batch size might be a good target bound to start with.

It is also possible to derive the adaptivity gap (and hence approximation ratio) in the

continuous case. A naive approach would be to discretize the space and generalize the binary

tree construction to multi-way tree, and further bound the error due to discretization.

7.2 Learning to Search

We revisit active search in this section, but with a specific application scenario, where there

are many similar active search problems to solve. This is typical in drug discovery, where

each biological target defines a new active search problem, and we often need to search for

useful compounds for many different targets in a fixed or similar search space. After we solve

many similar active search problems, we have accumulated considerable valuable experience

that could be useful for solving a new problem in a similar domain. We ask the question:

“can we transfer previous active search experience to solving a new problem?”

Meta-learn a better model. While we focused on policy design in this thesis, accurate

modeling of the underlying function is also of crucial importance. This is especially true for

nonmyopic policies due to its increasing reliance on the model with more lookahead. For all

124



the drug discovery experiments in this thesis, we used the k-nn model, which works quite well

as we have shown repeatedly. However, can we do even better by leveraging many available

(partially) labeled datasets from solving past active search problems?

One possible approach is a recently proposed meta-learning method known as conditional

neural processes [24]. We adapt this approach to our setting, where the Gaussian process

generating the training data is replaced by the empirical distribution composed of a family of

active search datasets, and of course the regression loss is replaced by classification loss. We

summarize the high level ideas as follows. Suppose we have m datasets {(Xi, Yi)}mi=1, where

dataset i contains the labeling information after solving active search for biological target i,

and Xi ∈ Rni×d and Yi ∈ {0, 1}ni . For now we assume all unlabeled compounds are negative.

A machine learning algorithm typically takes in a training set (or context set) D = (Xc, Yc),

and output a model f̂ , and then f̂ is used to predict on some unseen target input Xt, such

that Ŷt = f̂(Xt). This process can be summarized in a single function F :

Ŷt = F (Xt, Xc, Yc). (7.1)

If we have many such context and target set pairs, we can train a universally good model

F , which we can then apply to an unseen context and target set. This is exactly the idea

of conditional neural processes: we draw many context and target set pairs from a family

of datasets in the same domain, and learn a distribution over F by minimizing the loss
∑

(x,y)∈(X′,Y ′) `(y, F (x,Xc, Yc)), where the loss is defined on both the context and target

points: X ′ = [Xc, Xt], Y
′ = [Yc, Yt].

A possible implementation of training a conditional neural process with stochastic gradient

descent is summarized in Algorithm 3. It is also possible to improve this method with an

125



Algorithm 3 Conditional Neural Process Training
Given m datasets {(Xi, Yi)}mi=1

repeat
Randomly draw an index i from 1, . . . ,m;
Draw a random subset (X ′, Y ′) of some random size from dataset i;
Partition the subset into context set and target set (X ′, Y ′) = ((Xc, Y c), (X t, Y t));
Encode the context set: s = hw1(X

c, Y c), where hw1 is a deep set architecture (see (7.2));
Construct predictor: Pr(y = 1 | x,X ′, Y ′) = gw2(x, s);
Compute logistic loss L(w1, w2) =

∑
(x,y)∈(X′,Y ′) `(y, g(x, s));

Compute gradient ∇L(w1, w2) with back-propagation;
Update w1, w2 with a gradient step to minimize the loss;

until convergence
return meta-model: Pr(y = 1 | x,D) = gw∗2 (x, hw∗1 (D)), for any x,D.

attention mechanism, so that the model learns to focus on different context points for different

target input [51].

Meta-learn a better policy. As discussed in 2.4.2, it is also possible to adopt a model-free

reinforcement learning approach to directly learn a policy. The past experience can be

represented in a format such as “how much utility we got in the end if we choose x when set

D is observed”. This is precisely the definition of action values Q(D, x), which reminds us

of Q-learning [90]. One key question is: how to represent the Q function, or essentially, the

state D?

A good representation of the observed set D relies on the good representation of each individual

point in D. For the specific application of drug discovery, the individual points would be

molecules. Commonly used representations in cheminformatics are based on Weisfeiler-

Lehman (wl) algorithm operating on a molecular graph [83], such as Extended-Connectivity

Fingerprints (ecfp) [76]. They are basically a hashing-based indicator vectors indicating the

presence of molecular substructures of different radii.

126



Recently, graph neural networks [21, 28] has become a popular and powerful tool for learning

molecular representations, which can be seen as a differentiable version of the wl algorithm.

The molecular graph is mapped into a continuous vector in a differentiable way via message

passing [28], so that a data-driven representation can be learned via back-propagation. We

adopt a recently proposed graph-based variational autoencoder called jtvae [47], and use

the latent mean as a representation of a molecule. Preliminary results show that this

representation achieves much better performance than ecfp4 for active search on the drug

discovery datasets we have been using throughout this thesis.

Given a representation of each point x, we still need to represent D. Previous work on

meta-learning policies for Bayesian optimization [13] treats D as a sequence and encodes it

via a recurrent neural network. While we could adapt this work to active search, it might

be more appropriate to use a set function to represent the state D, since D is a set and the

order does not matter. One option is deep sets [106]. The idea is to represent state D as

s = ρ


 ∑

(x,y)∈D
φ(x, y)


 , (7.2)

with transformations ρ and φ represented as deep neural networks.

As discussed in 2.4.1, active search is an mdp where the observation set D alone is not

enough to represent the state. The locations and geometry of all unobserved points should

also be part of the state. This is easy to understand: given the same observations D, the

expected utility of the same point might be very different if it is a cluster center than if it

is just a singleton point. How to incorporate such “background” information into the state

representation in a meaningful and computationally efficient way is an interesting problem.

127



That said, explicitly representing the “background” may not be necessary if we always search

in a fixed space; such geometry information should be implicitly embedded in the network.

7.3 Multi-Fidelity Active Search

In scientific discovery, the candidate pool (e.g., molecules, alloys, etc.) is usually put through

several stages of screening to narrow down the targets. These screening procedures could be

computational simulation, laboratory tests, or human inspection, and later stages usually

come with higher cost. How to search for desired targets in such settings with a cost effective

approach is an important problem.

This motivates multi-fidelity active search! Suppose there is a family of functions F =

{fi : X 7→ Y , i = 1, . . . ,m} with increasing fidelity to the true label, and the cost of evaluating

fi(x), ci, is increasing such that c1 ≤ c2 ≤ . . . ≤ cm. How to define “fidelity” could depend

on the task at hand. A typical case is that F defines a family of nested subsets containing

the true targets R ⊆ X , that is, {x ∈ X : f1(x) = 1} ⊇ {x ∈ X : f2(x) = 1} ⊇ · · · ⊇

{x ∈ X : fm(x) = 1} = R, essentially formalizing the concept of “narrowing down.” Given

observations D = {(xj, yj)}, where each yj ∈ {0, 1, ?}m and question mark denotes “unknown”,

the problem is to design a policy that recommends which point to evaluate with which function.

The procedure in budgeted setting is summarized in Algorithm 4.

Suppose we still adopt Bayesian decision theory to solve this problem. The first challenge we

face is modeling both intra- and inter-function correlations. In particular, for any x ∈ X ,

k < i, we have: fi(x) = 1 implies fk(x) = 1, fk(x) = 0 implies fi(x) = 0, fk(x) = 1 would

128



Algorithm 4 Multi-fidelity active search
Given candidate pool X = {x1, . . . , xn};
Given functions f1, . . . , fm with increasing fidelity and costs c1, . . . , cm;
Given total cost budget C;
Initialize all yj = [?, ?, . . . , ?], j = 1, . . . , n (vector of length m);
Initialize D = {(xj, yj)};
repeat
i, j = Policy(D); {Goal: maximize

∑
1{yj[m] == 1}}

Evaluate: yj[i] = fi(xj);
Deduct cost: C = C − ci;
Update D with yj;

until C ≤ 0

likely increase the probability of fi(x) = 1, and fi(x) = 0 would likely decrease the probability

of fk(x) = 1.

Given a model, the derivation of Bayesian optimal policy is also much more challenging than

simple active search where the budget is simply defined as the number of iterations. It is

possible to borrow ideas from dynamic programming for knapsack problem. Also it may be

wise to start with a restricted policy class. For example, we do not allow coming back to

an earlier stage after passing it. That is, commit actions only in the first stage, observe,

then the second stage, observe, etc., till the last stage. We can imagine the optimal policy

is still challenging to derive, even if we further restrict the sub-policy in each stage to be

non-adaptive. The good news is we usually only deal with two or three stages in practice.

129



Appendix A

Hardness of Budgeted Active Search

In this section, we present the proof of Theorem 1. We assume that active search policies have
access to the correct marginal probabilities f(x;D) = Pr(y = 1 | x,D), for any given point x
and labeled data D, which may include “ficticious” observations. Further, the computational
cost will be analyzed as the number of calls to f , i.e., f(x;D) has unit cost. Note that the
optimal policy operates in such a computational model, with exponentially many calls (in
terms of |X |) to the marginal probability function f .

Our proof technique consists of constructing an explicit active search instance where a small
“secret” set of points S encodes the location of a larger “hidden” group of positive points. A
particular feasibly exponential-cost policy identifies this small set first, and then obtains a
large reward by collecting the revealed targets. We will show that an algorithm with limited
computational power (i.e., polynomial in n = |X |) will not be able to identify the set S. As a
consequence, its performance will be arbitrarily worse than an optimal solution as the size of
the instance increases.

The crux of the proof is to construct a class of instances H that we present next. Figure
A.1 shows a schematic representation of an example instance I ∈ H. The instances in H
differ from each other by a permutation of the labels. An instance has n = |X | = 22m points,
where m is a parameter of the instance. The search budget is defined to be B = m2. The
points in each instance can be categorized as follows.

“Clumps.” These points are partitioned into 2m groups, which we will call “clumps,” each of
size B. All points in a clump share the same label. Additionally, exactly one of the clumps
comprises all positive points; the remaining points are all negative. The clump containing

130



(
m

...

…

(

…

(

…

c
…

…

OR

d OR

OR

XOR

…

(

…

(

…

c
…

…

OR

d OR

OR

XOR

…

(

…

(

…

c
…

…

OR

d OR

OR

XOR

(a) Secret set S ofmdc isolated
points.

B

B

...

B

(
2m

(b) 2mB points from clumps
Cj .

(

…

22m � 2mB �mdc

(c) Isolated and independent
points R.

Figure A.1: An instance of active search where any efficient algorithm can be arbitrarily
worse than an optimal policy.

the positive points is chosen uniformly at random; therefore, the prior marginal probability
for any point xc in this category is f(xc; ∅) = pc = 2−m. We denote the clump of all positive
points C∗, where ∗ can be regarded as a m-bit integral index 1 ≤ ∗ ≤ 2m. Figure A.1(b)
illustrates these points.

“Isolated points.” The remaining points share the property that observing any single one
of them does not change the marginal probabilities of any other point. These points are
illustrated in Figures A.1(a) (black dots) and A.1(c). The marginal probabilities for any point
xb in this category is defined to be f(xb; ∅) = pb = 1− c

√
1/2, where we define c =

√
m/2 for

convenience. These points can be further classified into two categories:

• A “secret set,” denoted by S; see Figure A.1(a) (black dots). These points encode which
of the clumps C∗ contains the positive points, using a scheme we describe below. For
ease of exposition, we partition the set S into m subsets S1, . . . , Sm, each of size dc,
where we define d =

√
m. Thus |S| = mdc = m2/2 = B/2; the size of this secret set is

exactly half the budget.

The key of this construction is that each subset Si encodes one bit bi of information
about which clump C∗ contains the positive points, using a simple encoding scheme:
the binary representation of the positive clump C∗’s index is ∗ = b1b2 . . . bm. Each bit

131



is encoded with a two-step mechanism. First, each Si is partitioned into d groups of c
points, each group encoding a “meta” bit of information bij, 1 ≤ i ≤ m, 1 ≤ j ≤ d, by a
logical or. These meta-bits, not in the problem instance, are illustrated by the white
dots in A.1(a). Finally, the meta-bits associated with Si encode the bit bi via a logical
xor,19 bi = bi1 ⊕ · · · ⊕ bid.

• Independent points. The remaining 22m − 2mB −mdc points are totally independent
from the others; revealing them conveys no information for any other point. We denote
this set of points by R.

Observation 1. At least d points from Si need to be observed in order to infer one bit bi of
information about the positive clump.

A virtual bit bi is computed by the xor operation of the d associated meta-bits bi =

bi1 ⊕ · · · ⊕ bid. Notice that each bij has same marginal probability of being positive, i.e.,
∀i, j,Pr(bij = 1) = (1−pb)c = 1/2. We also have ∀i,Pr(bi = 1) = 1/2. It is necessary to observe
all d meta-bits bij from the same group Si to infer the bit bi, since observing a fraction of
the inputs of an xor does not change the marginal belief about its outcome. So observing
d− 1 or fewer points from S conveys no information about the positive clump. Equivalently,
∀x,Pr(y = 1 | x,D) = Pr(y = 1 | x) if |D ∩ S| ≤ d− 1.

Observation 2. Observing any number of clump points does not change the marginal
probability of any point in the secret set S.

We need to make sure that no external information can help to identify the secret set S.
Notice that the knowledge of bi does not change the marginal probability of any bij; hence,
no point x in S will have a different probability after observing bi. This means that observing
points outside S does not help distinguish S from the remaining isolated points R.

Now we formally restate Theorem 1 and provide its proof. The theorem implies that a
polynomial time algorithm cannot achieve a constant approximation ratio.

Theorem 4 (Formal statement of Theorem 1). Any (possibly randomized) policy for active
search that performs o

(
n
√

1
2

logn
)
inference calls f(x,D), with |D| ≤ B, has approximation

19Sum of the bits modulo 2.

132



ratio with respect to the expected utility of the optimal policy of O
(

1√
logn

)
where |X | = n is

the number of points, and B is the budget.20

Proof. Consider a random instance I ∈ H and fix a policy A. Let α be the total number of
inference calls performed by A throughout its execution. At the ith inference call Pr(y = 1 |
x,Di), A might use an arbitrary training set Di of size at most B. We will show that A has
a very small probability of collecting a large reward on I.

Before analyzing the algorithm A, we present a lower bound on the performance of an optimal
policy. Consider the following policy with unlimited computational power: In the first
iteration, compute the marginal probability of an arbitrary fixed clump point, conditioning
on observing every possible subset of the isolated points of size d with labels all equal to 1.
This set of O(nd) = O(n

√
1
2

logn) inference calls will reveal the location of the secret set S:
exactly those points will modify the probabilities of the fixed clump point. Now the policy
spends the first half of its budget querying the points in S (recall |S| = B/2). These outcomes
reveal the hidden clump of positives C∗. The policy now spends the second half of the budget
querying (collecting) these positive points. The expected performance of this strategy is
B/2 + pb B/2 > B/2. Certainly this is a lower bound on the optimal performance; hence

opt >
B

2
. (A.1)

Now consider the algorithm A at the ith inference. By Observations 1 and 2, A cannot
differentiate between the points in S and those in R unless |Di ∩ S| ≥ d. Suppose that before
the ith inference, the algorithm has no information about S. Then the chance of A choosing
a Di such that |Di∩S| ≥ d is no better than that of a random selection from n′ points, where
n′ = n− 2mB is the number of isolated points. We can upper bound the probability of A
choosing a dataset Di such that |Di ∩ S| ≥ d, by counting how many subsets would contain
at least d points from S, among all subsets of the n′ points of size at most B:

Pr
(
|Di ∩ S| ≥ d

)
≤
(
B/2
d

)(
n′−d
B−d
)

(
n′

B

) . (A.2)

20Note we used the little-o notation for the number of inference calls, and the big-O notation of the
approximation ratio.

133



We only consider the isolated points because an algorithm A that only queries the isolated
points has a higher probability of hitting the secret set. Also note that technically the
denomenator in (A.2) should be

(
n′

B

)
− i + 1 since one would not choose the same subsets

Dj, j < i as those before the ith inference. But asymptotically i ≤ α (assuming α = O(2n)

for now) is of much lower order than
(
n′

B

)
, therefore

(
n′

B

)
− α + 1 = Θ

((
n′

B

))
. Denote ph as

the probability of algorithm A ever “hiting” the secret set after α inferences; then ph can be
union-bounded:

ph ≤
α
(
B/2
d

)(
n′−d
B−d
)

(
n′

B

)

<
α
(
B
2

)d
Bd

(n′)d

=
α

(
2n′

B2

)d

Note B = m2 = 1
4

log2 n and n′ = n− 2mB = n−√n1
4

log2 n = Θ(n), so

(
2n′

B2

)d
= Θ

((
2n

B2

)d)

= Θ



(

n
1
32

log4 n

)√ 1
2

logn



= Θ
(
n
√

1
2

logn
)
.

We have now derived
ph <

α

Θ(n
√

1
2

logn)
.

So for any α = O
(
n
√

1
2

logn−ε), where ε is a positive constant, we have

ph < O
(

1

nε

)
. (A.3)

If A ever hits the secret set S, for simplicity, we will assume that it achieves maximal
performance B. If A never finds the secret set, we can further consider the following two
cases. If the algorithm queries points x ∈ R, no marginal probabilities are changed; if a

134



point x ∈ Cj is queried, for any clump j, only the marginal probabilities of the clumps are
changed. The expected performance in these two cases can be upper bounded by pretending
that the algorithm had a larger budget of size 2B; in which half the budget (i.e., B) is spent
on querying points in R, and the other half on querying the clump points. The expected
number of targets found after B queries on R is

Bpb = B(1− c
√

1/2) = B
(

1− 2
− 2√

m

)
. (A.4)

The expected number of targets found after B queries on the clump points is

B

2m
+

(
1− 1

2m

)(
B − 1

2m − 1
+

(
1− 1

2m − 1

)
(· · · )

)

=
B(B + 1)

2m+1
. (A.5)

Combining (A.4) and (A.5), we get that the expected performance in the case when A never
hits S can be upper bounded by

B(B + 1)

2m+1
+B

(
1− 2

− 2√
m
)
.

The overall expected performance of A can be upper bounded by

EA < Bph +
B(B + 1)

2m+1
+B

(
1− 2

− 2√
m
)
,

where we have used the trivial upper bound 1 > (1− ph). Finally, combining with the lower
bound of opt in (A.1), the approximation ratio can be upper bounded by

EA
opt

<
Bph + B(B+1)

2m+1 +B
(
1− 2

− 2√
m
)

B/2

= 2ph +
B + 1

2m
+ 2
(
1− 2

− 2√
m
)

= O
(

1

nε
+

log2 n

4
√
n

+ 2
(

1− 2
− 2

√
2√

logn

))

= O
(

1√
log n

)
.

135



for any α = O
(
n
√

1
2

logn−ε) = o
(
n
√

1
2

logn
)
. Note that it is easy to verify that 2

(
1−2

− 2
√
2√

logn
)

=

Θ
(

1√
logn

)
with L’Hôpital’s rule.

136



Appendix B

Adaptivity Gap of Batch Budgeted
Active Search

Theorem 2 is restated as follows:

There exist active search instances with budget T , such that

opt1

optb
= Ω

(
b

log T

)
,

where optx is the expected number of targets found by the optimal batch policy with batch
size x ≥ 1.

Proof. We begin the proof by constructing a class of active search instances I, parameterized
by a given budget T and batch size b, illustrated in Figure B.1. In these instances, there
are two types of points. Points of the first type are organized in a complete binary tree of
height h, which is a parameter we will specify later. There are 2h − 1 such points, each with
marginal probability p of being positive, where p is a also parameter we will fix later.

The second type of points is “clump points.” There are 2h “clumps” of points attached to
the leaves of the binary tree, and each clump has size T − h. The labels in each clump are
perfectly correlated; that is, either all labels in a clump are positive or all are negative. We
construct the problem instance such that exactly one of these clumps contains positive points.

137



We denote the clumps as {Cj}2h

j=1, where each clump Cj corresponds to a path Pj =

D1D2 · · ·Dh from the root of the binary tree to the clump, where Di ∈ {L,R} indicates
progressing from a parent to its left (L) or right (R) child.

The positive clump can be identified by the following rule: start from the root of the binary
tree and progress left if its label is negative and right if its label is positive. Repeat this
procedure until a clump is reached. This clump is defined to be the positive clump, and we
will refer to the single path leading to the positive clump as the correct path.

For example, in Figure B.1, if the labels of the points on the red dashed path are 0, 1, and 0,
respectively, then the third clump from the left would be the positive clump, and all others
would contain negative points only.

To better understand the correlations among the labels of the tree nodes and the clumps, we
define a notion of consistency between a labeling and a path.

Definition 2. The labels {yi}hi=1 of the nodes along a given path P = D1D2 · · ·Dh corre-
sponding to a clump C are consistent with P if we have yi = 0 when Di = L and yi = 1 when
Di = R for all labels along the path.

There are 2h possible labelings for the h tree nodes on each path, but only one of them is
consistent with the path. Among all the 2h paths, the one with consistent labeling would
correspond to the positive clump. Therefore, identifying the positive clump exactly specifies
all the labels of the nodes on the correct path and also constrains all other clumps to contain
negative points only.

However, identifying a clump as negative only implies that the joint probability of the
consistent labeling of the nodes on its path is zero; but any other labeling of these points is
still possible. The marginal probability of any point on this path does not change given this
information unless there is only one point on this path remaining unobserved. The probability
of its closest unobserved sibling clumps would also be increased given this information. For
example, if the leftmost clump in Figure B.1 is observed as being negative, this does not
imply its immediate parent tree node is positive, but it does imply that the probability of
its closest unobserved sibling clump would be increased by an appropriate factor. We will
characterize this joint probability distribution more in Lemma 5.

138



p

0

0

0 0 0 0

0

1

1

1111

1

10 0 000 0 0

2h clumps

complete binary
tree of height h

Figure B.1: An illustrative example of the constructed instance with h = 3 and 2h = 8
clumps, where the third clump from the left is positive, corresponding to the correct path,
010.

Parameter settings. We set the height of the tree h = T/2, and hence the clump size is
also T/2. We set p = 100 log T

b
, and here we assume b is of higher order than log T .

Lower bound the optimal sequential policy.

Lemma 1. opt1 > T/2.

Proof. Consider the following sequential policy. Query the tree along a path from the top
down, selecting each point based on the label of the parent to maintain consistency. This
policies identifies the positive clump in h = T/2 steps. The remaining budget, T/2, can then
be spent querying the points in the positive clump. The expected performance of this policy
certainly lower bounds that of the optimal one. Hence

opt[sas] ≥ T/2 · p+ T/2 > T/2. (B.1)

Upper bound the optimal batch policy.

Lemma 2. optb = O
(
T log T

b

)
.

First we claim that an optimal batch policy should never alternately query tree points and
clump points before the positive clump is identified. Let the trace of an optimal batch policy

139



be B1, B2, . . . , Bt, where t = T/b, Bi is the ith batch. Assume the positive clump is identified
at the kth iteration; if it is never identified, let k = t+ 1. We claim that B1, . . . , Bk−1 should
never alternate between tree points and clump points. That is, if Bj is the first batch that
contains clump points, then Bj+1, . . . , Bk−1 would only contain clump points; otherwise, say
Bj′(j < j′ ≤ k − 1) contains tree points, then it’s only better to move the tree points in Bj′

to the position of Bj . This is because the immediate utility of querying tree points is always21

the same before the positive clump is identified, no matter earlier or later; but earlier can
only result in higher expected future utility for clump points. Once the positive clump is
identified (k ≤ t), then after Bk, we know all other clumps are negative, and we also know
the labels of all the nodes on path corresponding to the positive clump, and all remaining
tree points become totally independent. Hence the optimal batches Bk+1, Bk+2, . . . , Bt would
be just collecting all the known positives; if there is still budget remaining after that, query
the tree points randomly (no difference).

So there are only two possible cases for the optimal policy: (1) query tree points first, then
clumps points; if the positive clump is identified, possibly query more tree points; (2) query
clumps points only; if the positive clump is identified, possibly query some tree points.

Based on this observation, we upper bound the expected utility of the optimal batch policy
by allowing budget 2T , split by sub-policies P and Q, where P only queries tree points with
budget T , and Q only clump points also with budget T ; whenever the positive clump is
identified, we automatically grant utility T .

Let u1 be the utility from tree nodes, u2 be that from the clumps nodes. Let the expected
utility of P be EP [u1], and the expected utility of Q be EQ[u2]. We have

opt[bas] ≤ max
P,Q

{
EP [u1] + EP

[
EQ[u2]

]
,EQ[u2] + EQ

[
EP [u1]

]}
. (B.2)

We will prove Lemma 2 by upper bounding both cases. First we upper bound the easier case,
where one performs Q first and then P , then the harder case, first P then Q.

When one performs Q first and then P , we have the following:
21Except when the tree point is the only unobserved one along an otherwise consistent path corresponding

to a clump known to be negative; this happens with extremely small probability as we will also see in Lemma
6.

140



Lemma 3. For any P and Q, EQ[u2] + EQ
[
EP [u1]

]
= O

(
T log T

b

)
.

To prove this lemma, we upper bound the two parts separately.

Lemma 4. For any Q, EQ[u2] = o(1).

To prove this bound, we prove the following more general lemma, which will be also used
later.

Lemma 5. Given a tree of height h′, a policy Q with budget T that only queries clump points
has expected utility upper bounded by U ≡ 1

2
T (T + 1)(1− p)h′−log(T+1)−1. Furthermore, the

probability of identifying the positive clump is upper bounded by O( 1
T

) if h′ = h.

Proof. For a tree of height h′, the probabilities of the clumps are non-increasing from left to
right: (1− p)h′ ≡ pmax, (1− p)h′−1p, (1− p)h′−1p, (1− p)h′−2p2, . . . , (1− p)ph′−1, ph

′ .

An optimal policy Q (possibly b = 1) only querying clump points goes like this: select
points from some clumps; if any one turns out to be positive, then spend the remaining
budget only querying that clump and the positives on the corresponding path (as mentioned
in the beginning, identifying the positive clump also reveals the labels of all points on its
corresponding path); if all selected points turn out to be negative, continue to try other
clumps in the same way.

The expected utility of this process can be upper bounded via the following strategy. We
first compute an upper bound p∗ of the posterior probability of any clump conditioned on T
negative observations, then compute the expected utility of this process as if all clumps were
independent and of probabilities p∗.

We first derive the maximum possible probability p∗ after any T negative observations. For
clumps under a subtree of height k, the maximum increase of probability is at most by a factor
of 1/(1−p)k by eliminating all 2k−1 clumps except the leftmost one. In terms of increasing the
maximum posterior probability by the most amount, the best strategy is to focus on a minimum
subtree covering at least T + 1 clumps, and spend all the budget T eliminating all other
clumps (2k − 1) except the leftmost one. Let k be the minimum integer such that T ≤ 2k − 1,
we get k = dlog(T + 1)e ≤ log(T + 1) + 1. So observing any T clumps (if no hit) can increase

141



the probability of any other clump to at most (1− p)h′/(1− p)k ≤ (1− p)h′−log(T+1)−1 ≡ p∗.
So the expected utility of any “clumps-only” policy can be upper bounded by (for any b ≥ 1)

p∗T + p∗(T − b) + p∗(T − 2b) + · · ·+ p∗b

≤ 1

2
T (T + 1)p∗

≤ 1

2
T (T + 1)(1− p)h′−log(T+1)−1 ≡ U.

The probability of identifying the positive clump Pr(hit) can also be upper bounded using p∗:

Pr(hit) < 1− (1− p∗)T . (B.3)

One can show that

lim
T→∞

1− (1− p∗)T
1/T

= 0. (B.4)

So Pr(hit) = o(1/T ).

Proof of Lemma 4. Using Lemma 5, we can bound EQ[u2] ≤ U with h′ = h, and it’s easy to
derive U is o(1) in this case.

Lemma 6. For any P ,Q, EQ
[
EP [u1]

]
= O

(
T log T

b

)
.

Proof. Consider two cases after Q finishes:

• First, Q identified the positive clump, with probability at most O(1/T ) by Lemma 5.
In this case the correct path would also be identified, and there are at most h positives
on the path. We can simply upper bound the utility by T . So EP [u1] ≤ 1

T
· T = 1;

• Second, Q did not identify the positive clump, in which case each tree point almost
always has expected utility p. A subtle situation is when all but one point are queried
on a path corresponding to a known negative clump, in which case the label of this
point would be known already. So it’s possible to get utility 1 instead of p when

142



querying a tree point. However, this happens with extremely small probability (at most
(1 − p)T/2−1), since all but one point on the path (length T/2) must have consistent
labels with the path. So we can simply ignore the expected utility of this case. Hence
EP [u1] ≤ Tp = O

(
T log T

b

)
.

If we sum these two cases, we have EQ
[
EP [u1]

]
= O

(
T log T

b

)
.

Proof of Lemma 3. By Lemma 4 and 6, we have EQ[u2] + EQ
[
EP [u1]

]
= O

(
T log T

b

)
.

Now consider the first case where one performs P first and then Q, we also have

Lemma 7. For any P ,Q, EP [u1] + EP
[
EQ[u2]

]
= O

(
T log T

b

)
.

We also upper bound the two parts separately.

Lemma 8. For any P, EP [u1] = O
(
T log T

b

)
.

Proof. This is trivial to show due to independence of the nodes: EP [u1] ≤ Tp = T · 100 log T
b

=

O
(
T log T

b

)
.

Lemma 9. For any P ,Q, EP
[
EQ[u2]

]
= O(1).

Note a key property of the constructed instance is that one has to wait until the previouly
chosen points are observed to determine which direction to go. However, in bas, a batch of
points has to be observed simultaneously, hence in each batch, various number of observations
could be wasted depending on the how many points turn out to be on the correct path.
This is exactly why there could be a gap between the performances of sas and bas. In
the following, we will upper bound the expected performance in this case by bounding the
probability of reaching a certain level on the correct path after all T/b batch queries. We
first introduce some useful definitions:

Definition 3. For any observed node in the tree, if it is positive, then we call its right subtree
relevant, and its left subtree irrelavant; or the other way around if it is negative.

143



0 1

A B

correct path

Figure B.2: Illustration of the relevant subtree. The red curve shows the correct path
identified so far. If the last node on the correct path is negative, then the node A must also
be on the correct path, and the subtree rooted at A is the relevant subtree; otherwise B is on
the correct path, and the subtree rooted at B is the relevant subtree.

Definition 4. The relevant subtree at any step is acquired by trimming all observed nodes
and their irrelevant subtrees. That is, removing any observed node and its irrelevant subtree,
and reconnecting its parent to its relevant subtree.

Let P ∗ = arg maxP EP
[
maxEQ[u2]

]
be the optimal sub-policy querying the tree. It’s easy to

see that P ∗ should always only query points in the relevant tree, since querying anywhere
else has same u1 but reveals no information about the identity of the positive clump.

Definition 5. A sequence S of length ` is a set of ` points x1, . . . , x` in a relevant subtree
such that xi is an ancestor of xi+1 for all i = 1, . . . , `− 1.

More intuitively, a set of points is a sequence if they are contained in some path.

Proof of Lemma 9. Recall p = 100 log T
b
→ 0 as T →∞ since we assumed b is of higher order

than log T , so p is close to 0 (hence p� 1/2) for large enough T .

144



For any sequence S of length `, the probability of S lying on the correct path is upper
bounded by

(1− p)` =

[(
1− 1

1/p

)−1/p
]−p`

≈ exp(−p`) = exp

(
−100 log T

b

b

10

)
=

1

T 10
.

Given any batch of size b, there are at most b sequences of length `. So the probability that
this batch contains ` nodes on the correct path can be union-bounded by

1

T 10
b ≤ 1

T 10
T =

1

T 9
.

The probability of any T/b batches contains T
b
· b

10
= T

10
nodes on the correct path can be

union-bounded by

1

T 9
· T
b

=
1

T 8b
≤ 1

T 8
. (B.5)

For any policy (e.g., P∗) iteratively choosing a set A of T points with batch size b, two cases
can happen:

• case 1: A contains T/10 or more points on the correct path. We have shown the
probability of this happening is at most 1/T 8. In this case we simply upper bound
EQ[u2] by T .

• case 2: A contains less than T/10 points on the correct path. Then the remaining
unidentified points on the correct path is at least h′ = T/2− T/10 = 2T/5. That is,
the shallowest leaf in the relevant subtree has height at least h′. The distribution of
the remaining clumps is dominated by that of a brand new active search instance A
with the tree height h′, in the sense that the optimal expected utility u′2 of Q on A can
only be greater, that is, EQ[u2] ≤ EQ[u′2]. Applying Lemma 5 with h′ = 2T/5, we can
find EQ[u′2] = o(1).

145



Therefore, there exist a constant c and large enough T , such that

EP
[
EQ[u2]

]
≤Pr(case 1) · T + Pr(case 2) · c

≤ 1

T 8
· T + 1 · c,

which is O(1).

Proof of Lemma 7. Combining Lemma 8 and 9, we have EP [u1] + EP
[
EQ[u2]

]
= O

(
T log T

b

)
.

Proof of Lemma 2. By (B.2) and Lemma 3 and 7, we have

optb = O
(
T log T

b

)
. (B.6)

Combining Lemma 1 and Lemma 2, we have

opt1

optb
= Ω

(
b

log T

)
.

146



Appendix C

Hardness of Cost Effective Active Search

We restate the hardness theorem for cost effective active search as follows:

Theorem 5. Any algorithm A with computational complexity o
(
nn

ε) has an approximation
ratio Ω(nε), for ε = 0.16; that is,

E[costA]

opt
= Ω (nε) , (C.1)

where E[costA] is the average cost of A, and opt is that of the optimal policy.

Proof. We begin our proof by constructing a very similar class of instances H as in the proof
for budgeted setting (see Appendix A), with different parameter settings. We reproduce the
instance illustration here in Figure C.1, and briefly summarize the essences. Each instance in
the class has n points with two types: “clumps” and “isolated points”.

“Clumps.” As shown in Figure C.1b, there are n4ε clumps, and each one has T = n2ε points
with the same labels, where ε is a small constant such as 0.1. There is exactly one positive
clump. So a priori the marginal probability of each clump point being positive is pc = 1/n4ε.

“Isolated points.” The remaining n− n6ε = Θ(n) points are isolated points, they are all
independent to each other; these points are further categorized into two classes: a “secret set”
and totally independent points.

• The secret set, denoted by S (Figure C.1a), encodes the location of the positive clump
in the following way: S contains m = log2(n4ε) = 4ε log n groups S1,S2, . . . ,Sm, each of

147



(
m

...

…

(

…

(

…

c
…

…

OR

d OR

OR

XOR

…

(

…

(

…

c
…

…

OR

d OR

OR

XOR

…

(

…

(

…

c
…

…

OR

d OR

OR

XOR

(a) Secret set S ofmdc isolated
points.

T

T

T

(b) 2mT points from clumps. (c) Isolated and independent
points R.

Figure C.1: An instance of active search where any efficient algorithm can be arbitrarily
worse than an optimal policy.

size n2ε; each Si are further partitioned into d = nε/(1− 5ε) groups 22, with each group
having c = nε points. Each of the jth (j = 1, . . . , d group in Si, i = 1, . . . ,m encodes
one virtual bit bij by taking the OR operation on the c labels (i.e. bij = 1 iff at least
one of the c points are positive); then the d bits bi1, . . . , bid encode a virtual bit bi using
XOR, i.e., bi = bi1 ⊕ · · · ⊕ bid. We set probability of each point in S as ps = 1− 1

21/c
so

that Pr(bij = 1) = (1− pb)c = 1
2
, which also leads to Pr(bi = 1) = 1

2
. Finally the binary

string b1b2 · · · bm determines the index of the positive clump.

• The remaining n − T2m −mdc points, denoted as set R, are totally independent to
each other and any other points. The probability of any point in R is also ps.

The goal is to find T points with minimum labeling cost.

The two observations given in the proof for budgeted setting still hold, as restated as following.

Observation 3. At least d points from Si (for any i) need to be observed in order to infer
one bit bi of information about the positive clump.

22here dividing by (1− 5ε) is not essential; only for the purpose of getting a simpler formula in our theorem.

148



Observation 4. Observing any number of clump points does not change the marginal
probability of any point in the secret set S.

Consider a random instance I ∈ H. We assume any policy has access to the correct marginal
probability Pr(y | x,D) where D may contain current observations and/or some “lookahead”
points, and we limit the lookahead amount to be d since an optimal policy operates under
such condition.

Upper bound of an optimal policy. With unlimited computational power, a policy can
first compute the marginal probability of an arbitrary fixed clump point, conditioning on
every possible subset of the isolated points of size d with labels all equal to 1. This set of
O(nd) inference calls will reveal the location of the secret set, since exactly those points that
could change the marginal probability of any fixed clump point are the secret points. Then
the policy could query the identified positive clump and is guaranteed to achieve the target
T in time T . So the total cost of an optimal policy is upper bounded by |S|+ T , i.e.,

opt < mdc+ T =
4ε

1− 5ε
n2ε log n+ n2ε = O(n2ε). (C.2)

In our asymptotic notations, all log factors will be omitted.

Lower bound of any policy with limited computational power. Fix a policy A. Our
goal is to show that with o

(
nn

ε) inference calls, the expected cost of A is lower bounded
by Ω (n3ε). The key is to bound the probability of A revealing the secret set throughout its
execution. By Observation 3 and 4, A can make inference calls Pr(y | x,D) to distinguish
points in S from those in R only when |D∩S| ≥ d. Suppose that before the ith inference call,
A has no information about S. Then the chance of A choosing a set D such that |D ∩S| ≥ d

is no better than that of a random selection from n′ = n − 2mT = n − n6ε = Θ(n) points.
Since our goal is to prove a lower bound of the cost in the order of Ω(n3ε), we allow A to
make inference calls Pr(y | x,D) with |D| ≤ n3ε. Note this is much larger than the lookahead
limit d. We can upper bound the probability of A choosing a dataset D such that |D∩S| ≥ d,
by counting how many subsets would contain at least d points from S, among all subsets of

149



the n′ points of size at most β = n3ε:

Pr (|D ∩ S| ≥ d) ≤
(
mdc
d

)(
n′−d
β−d
)

(
n′

β

) (C.3)

<

(
βmdc

n′

)d
(C.4)

= O
(

1

nnε

)
(C.5)

With α such inference calls, the probability ph of at least one of them hitting the secret set
can be union bounded by

ph < O
( α

nnε

)
. (C.6)

Hence for any α ≤ nn
ε−δ (for any positive constant δ),

ph < O
(

1

nδ

)
. (C.7)

If A ever hits the secret set S, we simply assume it will find all T positives with zero cost. If
not, thenA can do no better than random selection, and its expected cost is T/ps (note ps > pc,
and querying n3ε clump points would not make the remaining clump points’ probabilities
higher than ps). So the overall expected cost is lower bounded by ph ·0+(1−ph) · T

ps
= Θ(n3ε).

Here we used the fact that ps = 1− 1
21/c

= Θ(1
c
), which is easy to verify by L’Hôpital’s rule.

Therefore,

E[costA]

opt
>

Ω(n3ε)

O(n2ε)
= Ω (nε) . (C.8)

That is, any policy A for cost effective active search with α = o(nn
ε
) inference calls would

have expected cost at least Ω(nε) times more than the optimal cost. The proof holds for ε
such that n′ = n− n6ε = Θ(n) indicating 6ε < 1, and for (C.5) to hold, we have 5ε < 1. We
can set ε = 0.16, which is less than 1/6.

150



Remark 2. The parameters of the constructed instance are set to satisfy the following
constraints:

• Make opt linear in T , which means T = Ω(|S|).

• Our goal is to prove an Ω(nε) bound, so the probability of the secret points ps = 1− 1
21/c

=

Θ(1/c) should be O( 1
nε

). This is because opt is set to be linear in T and the cost upper
bound of a uniform random policy T/ps should be at least Ω(nε) · T .

• Make the probability of secret points larger than that of the clump points, i.e., ps > pc,
otherwise the cost upper bound would be T/pc. So we have 1

nε
> 1

2m
. That makes

m > ε log n.

• The number of clump points should be less than the total number of points. That is,
n > T · 2m, which leads to m < (1− 2ε) log n.

• d controls the scale of the computational complexity bound and lookahead limit, the
larger the tighter would be the bound.

151



Appendix D

Additional Results

D.1 Cost Effective Active Search

In Chapter 5 experiments, we only showed the results for ens and ceas with their best
parameters. Table D.1 and D.2 show the full set of results for all tested policies. Note we did
not test ceas-50 and ceas-0.5 for drug data since we expect them to be worse, according to
Table D.2.

Figure D.1 show the cost curves for each individual drug discovery datasets. The average of
the nine plots is shown in the main text.

D.2 Bayesian Optimization

In the main text, we presented bo results for nine synthetic functions. These nine functions
are selected from the 31 functions shown in Table D.3, with gap of ei less than 0.9. We
only run up to 10.ei for all functions, so 12.ei.s and 15.ei.s are not shown. We argue that
by identifying this set of “hard” functions, we are able to consistently see the advantage
of nonmyopic bo methods. In Table D.3, we can see all variants of our method perform
better than ei on average, but other interesting patterns are weak, possibly because they are
averaged out by the “easy” functions.

152



Table D.1: Results for all tested policies for the materials discovery dataset.

50 100 200 300 400 500 1000 1500 average
greedy 84.5 175.0 347.7 522.5 721.8 924.1 2025.9 2981.7 972.9
two-step 86.0 179.1 349.0 533.2 735.0 938.1 1973.1 3019.4 976.6
ens-10 81.7 167.8 339.2 520.4 721.9 939.8 1896.1 2836.5 937.9
ens-30 78.6 164.0 335.8 515.2 724.7 927.4 1795.8 2799.3 917.6
ens-50 78.0 162.5 329.6 517.0 729.6 926.6 1793.0 2812.2 918.6
ens-70 81.5 165.1 337.7 524.6 720.0 910.0 1790.6 2757.0 910.8
ens-0.1 84.2 177.2 343.2 520.6 717.7 946.3 1804.7 2765.1 919.9
ens-0.3 83.6 171.1 340.2 518.2 689.5 917.1 1815.9 2739.4 909.4
ens-0.5 82.3 162.7 335.4 535.3 693.2 897.9 1812.8 2736.4 907.0
ens-0.7 80.2 167.8 328.4 509.7 708.6 887.4 1798.5 2773.6 906.8
ences-10 87.3 173.8 345.0 518.3 719.0 930.0 1825.5 2886.7 935.7
ences-20 88.8 167.5 335.4 518.5 715.1 925.0 1779.7 2761.6 911.4
ences-30 88.4 164.1 332.7 511.5 703.7 898.4 1734.7 2768.2 900.2
ences-40 79.3 154.6 330.3 523.8 713.2 910.0 1748.8 2757.6 902.2
ences-50 85.2 156.4 330.8 518.4 701.4 885.7 1745.4 2753.2 897.1
ences-0.1 86.2 173.9 341.5 517.0 716.1 945.5 1844.1 2775.3 925.0
ences-0.2 84.5 167.6 334.9 506.7 720.9 919.5 1845.1 2805.7 923.1
ences-0.3 85.5 170.3 333.6 524.2 709.1 884.5 1823.6 2767.0 912.2
ences-0.4 83.4 158.6 331.2 532.0 704.5 881.4 1797.0 2808.3 912.0
ences-0.5 87.1 164.3 336.9 513.7 683.9 891.9 1774.1 2724.0 897.0

Table D.4 shows the average results of 50 repeats of ei and both “sampling” and “best”
variants of q.ei on the real world functions. Different from the results on synthetic functions,
we do not see “sampling” being consistently better than “best” or the other way around.

153



Table D.2: Results for all tested policies for the nine drug discovery datasets.

50 100 150 200 average
greedy 215.7 414.4 503.2 587.4 430.2
two-step 71.7 156.0 243.2 322.4 198.4
ens-10 59.3 133.0 211.9 291.4 173.9
ens-30 58.8 134.9 208.3 283.3 171.3
ens-50 58.6 137.3 205.1 286.3 171.8
ens-70 80.2 197.4 207.3 288.8 193.5
ens-0.1 61.3 142.2 219.1 297.5 180.1
ens-0.3 59.5 133.0 215.3 292.8 175.2
ens-0.5 59.2 132.6 215.0 287.9 173.7
ens-0.7 59.1 132.8 212.0 284.2 172.0
ences-10 57.3 119.5 196.2 273.6 161.7
ences-20 56.3 112.7 184.5 255.1 152.2
ences-30 75.1 128.4 196.5 261.5 165.4
ences-40 102.4 165.9 221.5 282.3 193.0
ences-0.1 58.2 197.3 195.0 271.4 180.5
ences-0.2 72.9 116.0 194.8 298.9 170.7
ences-0.3 57.1 121.5 267.6 318.9 191.3
ences-0.4 56.8 134.4 275.5 319.8 196.6

154



0 50 100 150 200

0

200

400

600

target utility

av
er

ag
e

co
st

GREEDY
TWO-STEP
ENS
ENCES

(a)

0 50 100 150 200

0

200

400

600

target utility

av
er

ag
e

co
st

GREEDY
TWO-STEP
ENS
ENCES

(b)

0 50 100 150 200

0

500

1 000

target utility

av
er

ag
e

co
st

GREEDY
TWO-STEP
ENS
ENCES

(c)

0 50 100 150 200

0

100

200

300

target utility

av
er

ag
e

co
st

GREEDY
TWO-STEP
ENS
ENCES

(d)

0 50 100 150 200

0

500

1 000

1 500

target utility

av
er

ag
e

co
st

GREEDY
TWO-STEP
ENS
ENCES

(e)

0 50 100 150 200

0

100

200

300

400

target utility
av

er
ag

e
co

st

GREEDY
TWO-STEP
ENS
ENCES

(f)

0 50 100 150 200

0

100

200

300

target utility

av
er

ag
e

co
st

GREEDY
TWO-STEP
ENS
ENCES

(g)

0 50 100 150 200

0

100

200

300

target utility

av
er

ag
e

co
st

GREEDY
TWO-STEP
ENS
ENCES

(h)

0 50 100 150 200

0

100

200

300

target utility

av
er

ag
e

co
st

GREEDY
TWO-STEP
ENS
ENCES

(i)

Figure D.1: Average cost versus the number of positives found for 9 drug discovery datasets.
The total number of positives are 553, 378, 506, 1023, 218, 916, 1024, 431, 255, respectively.

155



Table D.3: Average gap of 30 repeats on all 31 synthetic functions.

EI 2.EI.b 2.EI.s 3.EI.b 3.EI.s 4.EI.b 4.EI.s 5.EI.b 5.EI.s 10.EI.b 10.EI.s
branin 1.000 1.000 0.999 1.000 0.999 1.000 1.000 1.000 1.000 1.000 0.999
rosenbrock2 0.989 0.978 0.985 0.990 0.981 0.971 0.979 0.969 0.996 0.981 0.973
rosenbrock4 0.989 0.989 0.988 0.990 0.990 0.991 0.990 0.992 0.988 0.991 0.989
rosenbrock6 0.989 0.989 0.990 0.992 0.990 0.990 0.990 0.991 0.990 0.991 0.985
hartmann3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000
hartmann6 0.957 0.966 0.964 0.970 0.965 0.974 0.970 0.976 0.974 0.978 0.971
eggholder 0.605 0.606 0.589 0.603 0.612 0.649 0.638 0.554 0.620 0.600 0.651
dropwave 0.455 0.489 0.524 0.475 0.599 0.538 0.550 0.435 0.613 0.448 0.651
beale 0.920 0.903 0.910 0.935 0.915 0.927 0.874 0.901 0.902 0.912 0.900
shubert 0.323 0.299 0.440 0.387 0.551 0.382 0.500 0.464 0.371 0.285 0.458
6humpcamel 0.996 0.994 0.992 0.994 0.991 0.997 0.990 0.995 0.988 0.990 0.992
holder 0.936 0.873 0.913 0.941 0.930 0.965 0.949 0.950 0.948 0.883 0.936
3humpcamel 0.988 0.981 0.978 0.970 0.978 0.981 0.949 0.975 0.931 0.971 0.930
rastrigin2 0.917 0.903 0.882 0.884 0.891 0.899 0.884 0.877 0.910 0.847 0.836
rastrigin4 0.806 0.759 0.773 0.830 0.838 0.834 0.815 0.769 0.800 0.766 0.775
ackley2 0.850 0.772 0.838 0.802 0.918 0.832 0.869 0.774 0.783 0.811 0.896
ackley5 0.528 0.557 0.555 0.579 0.562 0.602 0.594 0.604 0.620 0.671 0.621
levy2 0.925 0.949 0.927 0.933 0.915 0.960 0.961 0.958 0.913 0.963 0.929
levy3 0.960 0.948 0.962 0.954 0.962 0.951 0.961 0.960 0.968 0.969 0.951
levy4 0.968 0.959 0.970 0.970 0.974 0.962 0.950 0.976 0.976 0.970 0.972
griewank2 0.960 0.963 0.952 0.958 0.966 0.954 0.955 0.962 0.958 0.961 0.960
griewank5 0.981 0.984 0.983 0.985 0.984 0.985 0.983 0.986 0.984 0.985 0.983
stybtang2 0.999 0.970 0.999 1.000 0.999 0.999 0.999 0.999 0.992 1.000 0.999
stybtang4 0.937 0.911 0.897 0.916 0.884 0.915 0.901 0.900 0.908 0.893 0.883
powell4 0.976 0.965 0.973 0.975 0.972 0.977 0.965 0.978 0.971 0.966 0.957
dixonprice2 0.988 0.985 0.990 0.989 0.963 0.967 0.953 0.959 0.945 0.982 0.953
dixonprice4 0.987 0.986 0.985 0.958 0.981 0.982 0.986 0.982 0.985 0.987 0.971
bukin 0.822 0.864 0.865 0.844 0.860 0.851 0.861 0.852 0.850 0.885 0.826
shekel5 0.273 0.383 0.400 0.414 0.413 0.402 0.405 0.425 0.366 0.401 0.439
shekel7 0.280 0.414 0.330 0.397 0.341 0.380 0.369 0.378 0.406 0.445 0.387
michal2 0.990 0.999 0.983 0.977 1.000 1.000 0.982 0.967 0.984 1.000 0.961
Average 0.842 0.844 0.850 0.853 0.861 0.859 0.856 0.850 0.853 0.851 0.858

Table D.4: Average gap of 50 repeats on real functions for all q.ei variants. Note function
names are shortcuts for better spacing.

EI 2.EI.b 2.EI.s 3.EI.b 3.EI.s 4.EI.b 4.EI.s 6.EI.b 6.EI.s 8.EI.b 8.EI.s
svm 0.738 0.926 0.913 0.930 0.940 0.914 0.911 0.892 0.937 0.929 0.834
lda 0.956 1.000 1.000 0.998 0.996 0.996 0.993 0.999 0.982 0.995 0.995
LR 0.963 1.000 0.998 0.999 1.000 0.999 0.999 1.000 0.999 1.000 1.000
Bos 0.470 0.491 0.467 0.490 0.478 0.495 0.460 0.460 0.502 0.455 0.467
Can 0.665 0.652 0.627 0.625 0.654 0.640 0.686 0.625 0.700 0.609 0.686
R3d 0.928 0.959 0.960 0.944 0.962 0.956 0.957 0.960 0.962 0.967 0.961
R4d 0.730 0.725 0.726 0.720 0.695 0.764 0.695 0.760 0.736 0.732 0.697
Ave 0.779 0.821 0.813 0.815 0.818 0.823 0.815 0.813 0.831 0.812 0.806

156



References

[1] ASM Alloy Center Database.

[2] Arash Asadpour, Hamid Nazerzadeh, and Amin Saberi. Stochastic Submodular Max-
imization. In C. Papadimitriou and S. Zhang, editors, International Workshop on
Internet and Network Economics (wine 2008), volume 5385 of Lecture Notes in
Computer Science, pages 477–489. Springer–Verlag, 2008.

[3] Peter Auer. Using Confidence Bounds for Exploitation–Exploration Trade-offs. Journal
of Machine Learning Research, 3:397–422, 2002.

[4] Maximilian Balandat, Brian Karrer, Daniel R Jiang, Samuel Daulton, Benjamin
Letham, Andrew Gordon Wilson, and Eytan Bakshy. BoTorch: Programmable Bayesian
Optimization in PyTorch. arXiv preprint arXiv:1910.06403, 2019.

[5] James O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer Series
in Statistics. Springer–Verlag, 2 edition, 1980.

[6] Dimitri P. Bertsekas. Dynamic programming and optimal control, volume 1. Athena
scientific, 2017.

[7] Eric Brochu, Vlad M. Cora, and Nando de Freitas. A Tutorial on Bayesian Optimization
of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical
Reinforcement Learning. CoRR, abs/1012.2599, 2010.

[8] Henry Chai and Roman Garnett. Improving quadrature for constrained integrands. In
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics
(aistats), 2019.

[9] Henry Chai, Jean-François Ton, Michael A. Osborne, and Roman Garnett. Automated
model selection with Bayesian quadrature. In Proceedings of the 36th International
Conference on Machine Learning ( icml), 2019.

[10] Shayok Chakraborty, Vineeth Balasubramanian, and Sethuraman Panchanathan. Adap-
tive Batch Mode Active Learning. IEEE Transactions on Neural Networks and Learning
Systems, 26(8):1747–1760, 2015.

[11] Constantinos Charalambous. On the evolution of particle fragmentation with applica-
tions to planetary surfaces, 2014. Chapter 5.

157



[12] Sean X Chen and Jun S Liu. Statistical applications of the Poisson-binomial and
conditional Bernoulli distributions. Statistica Sinica, pages 875–892, 1997.

[13] Yutian Chen, MatthewWHoffman, Sergio Gómez Colmenarejo, Misha Denil, Timothy P
Lillicrap, Matt Botvinick, and Nando De Freitas. Learning to learn without gradient
descent by gradient descent. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 748–756. JMLR. org, 2017.

[14] Yuxin Chen and Andreas Krause. Near-optimal Batch Mode Active Learning and
Adaptive Submodular Optimization. In S. Dasgupta and D. McAllester, editors,
Proceedings of the 30th International Conference on Machine Learning ( icml 2013),
volume 28 of Proceedings of Machine Learning Research, pages 160–168, 2013.

[15] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE Transac-
tions on Information Theory, 13(1):21–27, 1967.

[16] Nguyen Viet Cuong, Wee Sun Lee, Nan Ye, Kian Ming A. Chai, and Hai Leong Chieu.
Active Learning for Probabilistic Hypotheses Using the Maximum Gibbs Error Criterion.
In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 26 (nips 2013), pages
1457–1465, 2013.

[17] Bin Dai, Shilin Ding, Grace Wahba, et al. Multivariate Bernoulli distribution. Bernoulli,
19(4):1465–1483, 2013.

[18] Thomas Desautels, Andreas Krause, and Joel W Burdick. Parallelizing exploration-
exploitation tradeoffs in Gaussian process bandit optimization. Journal of Machine
Learning Research, 15:3873–3923, 2014.

[19] Thomas Desautels, Andreas Krause, and Joel W. Burdick. Parallelizing Exploration-
Exploitation Tradeoffs in Gaussian Process Bandit Optimization. Journal of Machine
Learning Research, 15(Dec):4053–4103, 2014.

[20] Persi Diaconis. Bayesian numerical analysis. Statistical Decision Theory and Related
Topics, 4(1):163–175, 1988.

[21] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy
Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for
learning molecular fingerprints. In Advances in Neural Information Processing Systems,
pages 2224–2232, 2015.

[22] Francois Fouss, Alain Pirotte, Jean-Michel Renders, and Marco Saerens. Random-Walk
Computation of Similarities between Nodes of a Graph with Application to Collaborative
Recommendation. IEEE Transactions on Knowledge and Data Engineering, 19:355–369,
2007.

158



[23] Peter I Frazier, Warren B Poweel, and Savas Dayanik. A Knowledge-Gradient Policy
for Sequential Information Collection. siam Journal on Control and Optimization,
47(5):2410–2439, 2008.

[24] Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton,
Murray Shanahan, Yee Whye Teh, Danilo Rezende, and S. M. Ali Eslami. Conditional
Neural Processes. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 1704–1713, Stockholmsmässan, Stockholm Sweden, 10–15 Jul
2018. PMLR.

[25] Roman Garnett, Thomas Gärtner, Martin Vogt, and Jürgen Bajorath. Introducing
the ‘active search’ method for iterative virtual screening. Journal of Computer-Aided
Molecular Design, 29(4):305–314, 2015.

[26] Roman Garnett, Yamuna Krishnamurthy, Donghan Wang, Jeff Schneider, and Richard
Mann. Bayesian Optimal Active Search on Graphs. In 9th Workshop on Mining and
Learning with Graphs, 2011.

[27] Roman Garnett, Yamuna Krishnamurthy, Xuehan Xiong, Jeff G. Schneider, and
Richard P. Mann. Bayesian Optimal Active Search and Surveying. In Proceedings of
the 29th International Conference on Machine Learning ( icml 2012), 2012.

[28] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
Neural message passing for quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1263–1272. JMLR. org, 2017.

[29] David Ginsbourger and Rodolphe Le Riche. Towards Gaussian process-based opti-
mization with finite time horizon. In Advances in Model-Oriented Design and Analysis
(moda) 9, pages 89–96, 2010.

[30] David Ginsbourger, Rodolphe Le Riche, and Laurent Carraro. A Multi-points Criterion
for Deterministic Parallel Global Optimization based on Gaussian Processes. Technical
report, 2008. hal-00260579.

[31] David Ginsbourger, Rodolphe Le Riche, and Laurent Carraro. Kriging is Well-Suited
to Parallelize Optimization. In Y. Tenne and Goh C. K., editors, Computational
Intelligence in Expensive Optimization Problems, volume 2 of Adaptation Learning and
Optimization, pages 131–162. Springer–Verlag, 2010.

[32] Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications
in active learning and stochastic optimization. Journal of Artificial Intelligence Research,
42:427–486, 2011.

159



[33] Javier González, Zhenwen Dai, Philipp Hennig, and Neil Lawrence. Batch Bayesian
optimization via local penalization. In Proceedings of the 19th International Conference
on Artificial Intelligence and Statistics (aistats), 2016.

[34] Javier González, Michael Osborne, and Neil D Lawrence. Glasses: Relieving the myopia
of Bayesian optimisation. arXiv preprint arXiv:1510.06299, 2015.

[35] Javier González, Michael Osborne, and Neil D. Lawrence. GLASSES: Relieving The
Myopia Of Bayesian Optimisation. In Proceedings of the 19th International Conference
on Artificial Intelligence and Statistics, number 51 in Proceedings of Machine Learning
Research, pages 790–799, 2016.

[36] Maura R Grossman and Gordon V Cormack. Technology-assisted review in e-discovery
can be more effective and more efficient than exhaustive manual review. Rich. JL &
Tech., 17:1, 2010.

[37] Maura R. Grossman, Gordon V. Cormack, and Adam Roegiest. TREC 2016 Total
Recall Track Overview. TREC, 2016.

[38] Tom Gunter, Michael A. Osborne, Roman Garnett, Philipp Hennig, and Stephen J.
Roberts. Sampling for inference in probabilistic models with fast Bayesian quadrature.
In Advances in Neural Information Processing Systems (neurips) 27, 2014.

[39] Philipp Hennig and Christian J Schuler. Entropy Search for Information-Efficient
Global Optimization. Journal of Machine Learning Research, 13:1809–1837, 2012.

[40] Hernández-Lobato, Matthew W José M, Hoffman, and Zoubin Ghahramani. Predictive
Entropy Search for Efficient Global Optimization of Black-box Functions. In Advances
in Neural Information Processing Systems 27 (nips 2014), pages 918–926, 2014.

[41] Trong Nghia Hoang, Kian Hsiang Low, Patrick Jaillet, and Mohan Kankanhalli. Non-
myopic ε-Bayes-optimal active learning of Gaussian processes. In Proceedings of the
31st International Conference on Machine Learning ( icml), 2014.

[42] Steven C.H. Hoi, Rong Jin, Jianke Zhu, and Michael R. Lyu. Batch Mode Active
Learning and Its Application to Medical Image Classification. In W. Cohen and
A. Moore, editors, Proceedings of the 23rd International Conference on Machine Learning
( icml 2006), pages 417–424, 2006.

[43] Ronald A Howard. Dynamic Programming and Markov Processes. 1960.

[44] Swarit Jasial, Ye Hu, Martin Vogt, and Jürgen Bajorath. Activity-relevant similarity
values for fingerprints and implications for similarity searching. F1000Research, 5(Chem
Inf Sci):591, 2016.

160



[45] Shali Jiang, Gustavo Malkomes, Matthew Abbott, Benjamin Moseley, and Roman
Garnett. Efficient nonmyopic batch active search. In Advances in Neural Information
Processing Systems (neurips) 31, pages 1099–1109, 2018.

[46] Shali Jiang, Gustavo Malkomes, Geoff Converse, Alyssa Shofner, Benjamin Moseley,
and Roman Garnett. Efficient Nonmyopic Active Search. In Proceedings of the 34th
International Conference on Machine Learning ( icml), 2017.

[47] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction Tree Variational Autoen-
coder for Molecular Graph Generation. In Jennifer Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages 2323–2332, Stockholmsmässan,
Stockholm Sweden, 10–15 Jul 2018. PMLR.

[48] Donald R. Jones. Direct global optimization algorithm. In Encyclopedia of optimization,
pages 431–440. 2009.

[49] Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabás Póczos.
Parallelised Bayesian optimisation via Thompson sampling. In International Conference
on Artificial Intelligence and Statistics, pages 133–142, 2018.

[50] Yoshiyuki Kawazoe, Jing-Zhi Yu, An-Pang Tsai, and Tsuyoshi Masumoto, editors.
Nonequilibrium Phase Diagrams of Ternary Amorphous Alloys, volume 37A of Con-
densed Matter. 1997.

[51] Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosen-
baum, Oriol Vinyals, and Yee Whye Teh. Attentive neural processes. In International
Conference on Learning Representations, 2019.

[52] Andreas Krause and Carlos Guestrin. Nonmyopic active learning of Gaussian pro-
cesses: an exploration-exploitation approach. In Proceedings of the 24th International
Conference on Machine Learning ( icml), 2007.

[53] Alex Kulesza and Ben Taskar. Determinantal point processes for machine learning.
Foundations and Trends in Machine Learning, 5(2–3):123–286, 2012.

[54] Harold J Kushner. A versatile stochastic model of a function of unknown and time
varying form. Journal of Mathematical Analysis and Applications, 5(1):150–167, 1962.

[55] Harold Joseph Kushner. A new method of locating the maximum point of an arbitrary
multipeak curve in the presence of noise. ASME. J. Basic Eng, 86(1):97–106, 1964.

[56] Remi Lam, Karen Willcox, and David H. Wolpert. Bayesian optimization with a
finite budget: an approximate dynamic programming approach. In Advances in Neural
Information Processing Systems (neurips) 29, 2016.

161



[57] F. M. Larkin. Gaussian measure in Hilbert space and applications in numerical analysis.
Rocky Mountain Journal of Mathematics, 2(3):379–422, 1972.

[58] David D. Lewis and William A. Gale. A sequential algorithm for training text classifiers.
In Proceedings of the 17th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, 1994.

[59] Steffen Liebscher and Thomas Kirschstein. Predicting the outcome of professional darts
tournaments. International Journal of Performance Analysis in Sport, 17(5):666–683,
2017.

[60] Chun Kai Ling, Kian Hsiang Low, and Patrick Jaillet. Gaussian process planning with
Lipschitz continuous reward functions: towards unifying Bayesian optimization, active
learning, and beyond. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[61] Tiqing Liu, Yuhmei Lin, Xin Wen, Robert N Jorissen, and Michael K Gilson. BindingDB:
A web-accessible database of experimentally determined protein–ligand binding affinities.
Nucleic Acids Research, 35(suppl 1):D198–D201, 2007.

[62] Yifei Ma, Roman Garnett, and Jeff G. Schneider. Active Area Search via Bayesian
Quadrature. In Proceedings of the 17th International Conference on Artificial Intelli-
gence and Statistics, 2014.

[63] Yifei Ma, T-K Huang, and Jeff G. Schneider. Active Search and Bandits on Graphs
using Sigma-Optimality. In M. Meila and T. Heskes, editors, Proceedings of the 31st
Conference on Uncertainty in Artificial Intelligence (uai 2015), pages 542–551, 2015.

[64] Yifei Ma, Dougal J. Sutherland, Roman Garnett, and Jeff Schneider. Active Pointillistic
Pattern Search. In Proceedings of the 18th International Conference on Artificial
Intelligence and Statistics, number 38 in Proceedings of Machine Learning Research,
pages 672–680, 2015.

[65] Gustavo Malkomes and Roman Garnett. Automating Bayesian optimization with
Bayesian optimization. In Advances in Neural Information Processing Systems
(neurips) 31, 2018.

[66] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[67] Jonas Močkus. On Bayesian methods for seeking the extremum. In Optimization
Techniques IFIP Technical Conference, pages 400–404. Springer, 1974.

162



[68] Iain Murray. Differentiation of the Cholesky decomposition. arXiv preprint
arXiv:1602.07527, 2016.

[69] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An Analysis of Approximations for
Maximizing Submodular Set Functions. Mathematical Programming, 14(1):265–294,
1978.

[70] Anthony O’Hagan. Bayes-Hermite quadrature. Journal of Statistical Planning and
Inference, 29:245–260, 1991.

[71] Michael A. Osborne, Roman Garnett, Zoubin Ghahramani, David Duvenaud, Stephen J.
Roberts, and Carl E. Rasmussen. Active learning of model evidence using Bayesian
quadrature. In Advances in Neural Information Processing Systems (neurips) 25,
2012.

[72] Michael A Osborne, Roman Garnett, and Stephen J Roberts. Gaussian processes for
global optimization. In The 3rd International Conference on Learning and Intelligent
Optimization (LION3), 2009.

[73] Joseph J Pfeiffer III, Jennifer Neville, and Paul N Bennett. Active Exploration in
Networks: Using Probabilistic Relationships for Learning and Inference. In Proceedings
of the 23rd acm International Conference on Information and Knowledge Management,
pages 639–648, 2014.

[74] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006.

[75] Jean-Michel Renders. Active Search for High Recall: A Non-stationary Extension of
Thompson Sampling. In Gabriella Pasi, Benjamin Piwowarski, Leif Azzopardi, and
Allan Hanbury, editors, Advances in Information Retrieval, pages 722–728, 2018.

[76] David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of
Chemical Information and Modeling, 50(5):742–754, 2010.

[77] Régis Sabbadin, Jérôme Lang, and Nasolo Ravoanjanahary. Purely Epistemic Markov
Decision Processes. In Proceedings of the 22nd aaai Conference on Artificial Intelligence,
pages 1057–1062, 2007.

[78] Vydūnas R. Šaltenis. One Method of Multiextremum Optimization. Avtomatika i
Vychislitel’naya Tekhnika (Automatic Control and Computer Sciences), 5(3):33–38,
1971.

[79] Steven L Scott. A modern Bayesian look at the multi-armed bandit. Applied Stochastic
Models in Business and Industry, 26(6):639–658, 2010.

163



[80] Burr Settles. Active learning literature survey. Computer Sciences Technical Report,
2010.

[81] Amar Shah and Zoubin Ghahramani. Parallel predictive entropy search for batch
global optimization of expensive objective functions. In Advances in Neural Information
Processing Systems (neurips) 28, 2015.

[82] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas.
Taking the human out of the loop: a review of Bayesian optimization. Proceedings of
the IEEE, 104(1):148–175, Jan 2016.

[83] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and
Karsten M Borgwardt. Weisfeiler-Lehman Graph Kernels. Journal of Machine Learning
Research, 12(77):2539–2561, 2011.

[84] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of Go with deep neural networks and tree search.
nature, 529(7587):484, 2016.

[85] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.
Mastering the game of Go without human knowledge. Nature, 550(7676):354–359, 2017.

[86] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization
of machine learning algorithms. In Advances in Neural Information Processing Systems
(neurips) 25, pages 2951–2959, 2012.

[87] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian
process optimization in the bandit setting: No regret and experimental design. In Pro-
ceedings of the 27th International Conference on International Conference on Machine
Learning, ICML’10, pages 1015–1022, USA, 2010. Omnipress.

[88] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias W. Seeger. Gaussian
Process Optimization in the Bandit Setting: No Regret and Experimental Design. In Jo-
hannes Fürnkranz and Thorsten Joachims, editors, Proceedings of the 27th International
Conference on Machine Learning ( icml 2010), pages 1015–1022, 2010.

[89] Teague Sterling and John J. Irwin. zinc 15 – Ligand Discovery for Everyone. Journal
of Chemical Information and Modeling, 55(11):2324–2337, 2015.

[90] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

164



[91] William R Thompson. On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

[92] Hastagiri P. Vanchinathan, Andreas Marfurt, Charles-Antoine Robelin, Donald Koss-
mann, and Andreas Krause. Discovering Valuable Items from Massive Data. In
Proceedings of the 21st acm sigkdd International Conference on Knowledge Discovery
and Data Mining (kdd 2015), pages 1195–1204, 2015.

[93] Jialei Wang. Bayesian Optimization with Parallel Function Evaluations and Multiple
Information Sources: Methodology with Applications in Biochemistry, Aerospace En-
gineering, and Machine Learning. PhD thesis, Operations Research and Information
Engineering, Cornell University, 2017.

[94] Jialei Wang, Scott C Clark, Eric Liu, and Peter I Frazier. Parallel Bayesian global
optimization of expensive functions. arXiv preprint arXiv:1602.05149, 2016.

[95] Xuezhi Wang, Roman Garnett, and Jeff G. Schneider. Active Search on Graphs. In
R Ghani, T E Senator, P Bradley, R Parekh, and J He, editors, Proceedings of the
19th acm sigkdd International Conference on Knowledge Discovery and Data Mining
(kdd 2013), pages 731–738, 2013.

[96] Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient Bayesian opti-
mization. In International Conference on Machine Learning (ICML), 2017.

[97] Logan Ward, Ankit Agrawal, Alok Choudhary, and Christopher Wolverton. A General-
Purpose Machine Learning Framework for Predicting Properties of Inorganic Materials.
2016. arXiv preprint arXiv:1606.09551 [cond-mat.mtrl-sci].

[98] Manfred K Warmuth, Jun Liao, Gunnar Rätsch, Michael Mathieson, Santosh Putta,
and Christian Lemmen. Active Learning with Support Vector Machines in the Drug
Discovery Process. Journal of Chemical Information and Computer Sciences, 43(2):667–
673, 2003.

[99] Manfred K Warmuth, Gunnar Rätsch, Michael Mathieson, Jun Liao, and Christian
Lemmen. Active Learning in the Drug Discovery Process. In T. G. Dietterich, S. Becker,
and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14
(nips 2001), pages 1449–1456, 2001.

[100] Kevin Williams, Elizabeth Bilsland, Andrew Sparkes, Wayne Aubrey, Michael Young,
Larisa N Soldatova, Kurt De Grave, Jan Ramon, Michaela de Clare, Worachart
Sirawaraporn, et al. Cheaper faster drug development validated by the repositioning
of drugs against neglected tropical diseases. Journal of the Royal Society Interface,
12(104):20141289, 2015.

165



[101] James Wilson, Frank Hutter, and Marc Deisenroth. Maximizing acquisition functions
for Bayesian optimization. In Advances in Neural Information Processing Systems 31,
pages 9905–9916. 2018.

[102] Jian Wu and Peter Frazier. The parallel knowledge gradient method for batch Bayesian
optimization. In Advances in Neural Information Processing Systems (neurips) 29,
2016.

[103] Jian Wu and Peter Frazier. Practical two-step lookahead Bayesian optimization. In
Advances in Neural Information Processing Systems (neurips) 32, 2019.

[104] Zhe Yu and Tim Menzies. Total recall, language processing, and software engineering.
In Proceedings of the 4th ACM SIGSOFT International Workshop on NLP for Software
Engineering, pages 10–13, 2018.

[105] Xubo Yue and Raed Al Kontar. Why non-myopic Bayesian optimization is promising
and how far should we look-ahead? A study via rollout. arXiv, 2019. Accepted to
AISTATS 2020.

[106] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhut-
dinov, and Alexander J Smola. Deep sets. In Advances in Neural Information Processing
Systems, pages 3391–3401. 2017.

166


